DOI QR코드

DOI QR Code

세기조절방사선치료의 환자별 정도관리를 위한 2차원적 선량계의 유용성 평가

Comparison of the Efficacy of 2D Dosimetry Systems in the Pre-treatment Verification of IMRT

  • 홍채선 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 임종수 (경기대학교 의학물리학과) ;
  • 주상규 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 신은혁 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 한영이 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 안용찬 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실)
  • Hong, Chae-Seon (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lim, Jong-Soo (Department of Medical Physics, Graduate School of Kyonggi University) ;
  • Ju, Sang-Gyu (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Eun-Hyuk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Han, Young-Yih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ahn, Yong-Chan (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2009.05.12
  • 심사 : 2009.06.01
  • 발행 : 2009.06.30

초록

목 적: 세기조절방사선치료에 있어서 치료 전 환자별 정도관리(QA)에 사용하는 EDR2 필름과 2차원 이온전리함배열(MatriXX), 그리고 전자포탈영상장치(EPID)에 대해 절대선량계와 상대선량계로서의 정확도와 효율성을 평가했다. 대상 및 방법: 6 MV X-선을 이용하여 두 가지 유형(기준 조사면, 오차 평가 조사면)의 세기조절 조사면을 설계하고 EDR2 필름, MatriXX, EPID를 사용하여 절대선량과 상대적 선량분포를 비교, 분석했다. 세 시스템의 절대선량 정확성을 평가하기 위해 세 시스템의 선량 측정값과 전리함 측정값을 비교했고, 상대적 선량분포 평가를 위해 기준 조사면과 의도적으로 MLC leaf 위치를 변형시킨 오차 평가 조사면에서 감마($\gamma$)값과 조사면 수직 프로파일을 분석했다. 또한, 환자별 QA 전 과정을 수행하는데 소요되는 시간을 측정하여 시스템에 따른 업무 부하를 비교했다. 결 과: EDR2 필름, MatriXX, 그리고 EPID의 절대선량 측정값과 전리함 측정값을 비교한 결과 EPID는 1%, MatriXX는 2%, EDR2 필름은 3% 이내의 오차 측정 정확도를 보였다. EDR2 필름과 EPID는 허용기준 3%/3 mm와 2%/2 mm 모두에서 감마값이 1을 초과하는 화소($\gamma$%>1)가 전체 화소의 2% 이내였다. 그러나 MatriXX의 경우 3%/3 mm에서는 1% 이내의 오차를 보였으나 2%/2 mm를 적용한 $10\times20\;cm^2$$10\times10\;cm^2$에서는 각각 5.94%와 4.95%로 증가했다. 세 시스템으로부터 얻은 오차 평가 조사면의 선량 분포를 치료계획 장치로부터 얻은 기준 조사면과 중첩하여 감마 분석한 결과, 3%/3 mm에서 EDR2 필름이 -4 mm의 MLC leaf 오차 식별이 가능했고 EPID는 -3 mm 오차를 감지했다. 2%/2 mm의 경우, EDR2 필름과 EPID에서 각각 -3 mm와 -2 mm의 오차 식별이 가능했다. 그러나 MatriXX의 경우 경계가 불분명해 오차 구분이 어려웠다. 환자별 QA 전 과정을 수행하는데 소요되는 시간은 EDR2 필름이 약 110분, MatriXX가 약 80분, EPID가 약 55분이었다. 결 론: 본 연구는 IMRT의 치료 전 환자별 QA를 위한 EDR2 필름, MatriXX, 그리고 EPID의 측정 정확도와 효율성을 분석했다. EDR2 필름과 EPID는 선량 측정 정확도가 우수했으며, MatriXX는 측정 시간이 짧았다. 본 연구 결과는 임상에서 효율적인 IMRT QA 시스템을 구축하는데 좋은 자료가 될 것으로 생각한다.

Purpose: To compare the accuracy and efficacy of EDR2 film, a 2D ionization chamber array (MatriXX) and an amorphous silicon electronic portal imaging device (EPID) in the pre-treatment QA of IMRT. Materials and Methods: Fluence patterns, shaped as a wedge with 10 steps (segments) by a multi-leaf collimator (MLC), of reference and test IMRT fields were measured using EDR2 film, the MatriXX, and EPID. Test fields were designed to simulate leaf positioning errors. The absolute dose at a point in each step of the reference fields was measured in a water phantom with an ionization chamber and was compared to the dose obtained with the use of EDR2 film, the MatriXX and EPID. For qualitative analysis, all measured fluence patterns of both reference and test fields were compared with calculated dose maps from a radiation treatment planning system (Pinnacle, Philips, USA) using profiles and $\gamma$ evaluation with 3%/3 mm and 2%/2 mm criteria. By measurement of the time to perform QA, we compared the workload of EDR2 film, the MatriXX and EPID. Results: The percent absolute dose difference between the measured and ionization chamber dose was within 1% for the EPID, 2% for the MatriXX and 3% for EDR2 film. The percentage of pixels with $\gamma$%>1 for the 3%/3 mm and 2%/2 mm criteria was within 2% for use of both EDR2 film and the EPID. However, differences for the use of the MatriXX were seen with a maximum difference as great as 5.94% with the 2%/2 mm criteria. For the test fields, EDR2 film and EPID could detect leaf-positioning errors on the order of -3 mm and -2 mm, respectively. However it was difficult to differentiate leaf-positioning errors with the MatriXX due to its poor resolution. The approximate time to perform QA was 110 minutes for the use of EDR2 film, 80 minutes for the use of the MatriXX and approximately 55 minutes for the use of the EPID. Conclusion: This study has evaluated the accuracy and efficacy of EDR2 film, the MatriXX and EPID in the pre-treatment verification of IMRT. EDR2 film and the EPID showed better performance for accuracy, while the use of the MatriXX significantly reduced measurement and analysis times. We propose practical and useful methods to establish an effective QA system in a clinical environment.

키워드

참고문헌

  1. Garden AS, Morrison WH, Rosenthal DI, Chao KSC, Ang KK. Target coverage for head and neck cancers treated with IMRT: review of clinical experiences. Seminars in Radiation Oncology 2004;14:103-109 https://doi.org/10.1053/j.semradonc.2003.12.004
  2. Yao M, Karnell LH, Funk GF, Lu H, Dornfeld K, Buatti JM. Health-related quality-of-life outcomes following IMRT versus conventional radiotherapy for oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2007;69:1354-1360 https://doi.org/10.1016/j.ijrobp.2007.05.003
  3. Fenkell L, Kaminsky I, Breen S, Huang S, Van Prooijen M, Ringash J. Dosimetric comparison of IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus. Radiotherapy and Oncology 2008;89:287-291 https://doi.org/10.1016/j.radonc.2008.08.008
  4. Fenoglietto P, Laliberte B, Allaw A, et al. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk. Radiotherapy and Oncology 2008;88:77-87 https://doi.org/10.1016/j.radonc.2007.12.011
  5. Garofalo MC, Nazareth DP, Errens M, D'Souza W, Regine WF. A comparison of 3D-CRT and IMRT planning for patients with T3Nx or T4Nx Mid/Distal rectal cancers: potential for small bowel sparing and reductions in Doselimiting acute GI toxicity. Int J Radiat Oncol Biol Phys 2008;72: S250-250
  6. Huh SJ. Present status and future aspects of radiation oncology in Korea. J Korean Soc Ther Radiol Oncol 2006;24: 244-266
  7. Korea Food and Drug Administration. Development of quality assurance system of clinical dose for radiation therapy, Seoul, 2006
  8. Van Esch A, Bohsung Jg, Sorvari P, et al. Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments. Radiotherapy and Oncology 2002;65:53-70 https://doi.org/10.1016/S0167-8140(02)00174-3
  9. Cho BC, Park SW, Oh DH, Bae H. Quality assurance for intensity modulated radiation therapy. J Korean Soc Ther Radiol Oncol 2001;19:275-286
  10. Cadman P, McNutt T, Bzdusek K. Validation of physics improvements for IMRT with a commercial treatment-planning system. J Appl Clin Med Phys 2005;6:74-86 https://doi.org/10.1120/jacmp.2024.25341
  11. Mu G, Ludlum E, Xia P. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer. Phys Med Biol 2008;53:77-88 https://doi.org/10.1088/0031-9155/53/1/005
  12. Bayouth JE, Wendt D, Morrill SM. MLC quality assurance techniques for IMRT applications. Med Phys 2003;30:743-750 https://doi.org/10.1118/1.1564091
  13. LoSassoT, Chui CS, Ling CC. Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode. Med Phys 2001;28:2209-2219 https://doi.org/10.1118/1.1410123
  14. Agazaryan N, Solberg TD, DeMarco JJ. Patient specific quality assurance for the delivery of intensity modulated radiotherapy. J Appl Clin Med Phys 2003;4:40-50 https://doi.org/10.1120/1.1525243
  15. Yan G, Liu C, Simon TA, Peng LC, Fox C, Li JG. On the sensitivity of patient-specific IMRT QA to MLC positioning errors. J Appl Clin Med Phys 2009;10:2915
  16. Yoon SM, Yi BY, Choi EK, Kim JH, Ahn SD, Lee S. Quality assurance of patients for intensity modulated radiation therapy. J Korean Soc Ther Radiol Oncol 2002;20:81-90
  17. Bucciolini M, Buonamici FB, Casati M. Verification of IMRT fields by film dosimetry. Med Phys 2004;31:161-168 https://doi.org/10.1118/1.1631093
  18. Ju SG, Ahn YC, Huh SJ, Yeo IJ. Film dosimetry for intensity modulated radiation therapy: dosimetric evaluation. Med Phys 2002;29:351-355 https://doi.org/10.1118/1.1449493
  19. Herzen J, Todorovic M, Cremers F, et al. Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine. Phys Med Biol 2007;52:1197-1208 https://doi.org/10.1088/0031-9155/52/4/023
  20. Greer PB, Popescu CC. Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Med Phys 2003;30:1618-1627 https://doi.org/10.1118/1.1582469
  21. Van Esch A, Depuydt T, Huyskens DP. The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiotherapy and Oncology 2004;71:223-234 https://doi.org/10.1016/j.radonc.2004.02.018
  22. McDermott LN, Wendling M, van Asselen B, et al. Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification. Med Phys 2006;33:3921-3930 https://doi.org/10.1118/1.2230810
  23. Lee C, Menk F, Cadman P, Greer PB. A simple approach to using an amorphous silicon EPID to verify IMRT planar dose maps. Med Phys 2009;36:984-992 https://doi.org/10.1118/1.3075817
  24. OmniPro I'mRT. System Manual, Scanditronix Wellhofer, P-05-005-510-001 v.01
  25. Almond PR, Biggs PJ, Coursey BM, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 1999;26:1847-1870 https://doi.org/10.1118/1.598691
  26. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys 1998;25:656-661 https://doi.org/10.1118/1.598248