DOI QR코드

DOI QR Code

An Experimental Study of Generality of Software Defects Prediction Models based on Object Oriented Metrics

객체지향 메트릭 기반인 결함 예측 모형의 범용성에 관한 실험적 연구

  • 김태연 (부산대학교 컴퓨터공학과) ;
  • 김윤규 (부산대학교 컴퓨터공학과) ;
  • 채흥석 (부산대학교 컴퓨터공학과)
  • Published : 2009.06.30

Abstract

To support an efficient management of software verification and validation activities, much research has been conducted to predict defects in early phase. And defect prediction models have been proposed to predict defects. But the generality of the models has not been experimentally studied for other software system. In other words, most of prediction models were applied only to the same system that had been used to build the prediction models themselves. Therefore, we performed an experiment to explore generality of major prediction models. In the experiment, we applied three defects prediction models to three different systems. As a result, we cannot find their generality of defect prediction capability. The cause is analyzed to result from a different metric distribution between the systems.

검증과 확인을 통한 소프트웨어의 효율적인 관리를 지원하기 위하여 많은 연구들이 개발 초기 단계에 예측하기 위한 목적으로 연구를 하고 있다. 기존의 많은 연구들이 결함을 예측하기 위한 모형들을 제시했지만 기존의 연구에서는 결함 예측 모형을 다른 시스템에 범용적으로 적용이 가능한지에 대한 충분한 연구가 없었다. 또한 대부분의 결함 예측 모형은 모형 개발 당시와 같은 동일 시스템에서 예측력을 평가하였다. 그러므로 본 연구에서는 결함 예측 모형이 개발 당시와 다른 시스템에 범용적으로 적용될 수 있는지에 관하여 실험하였다. 실험은 3개의 실험 대상 시스템에 3개의 결함 예측 모형을 적용하여 예측력을 평가하였다. 실험 결과에서는 모형의 범용성에 대하여 찾을 수 없었다. 이는 모형의 개발 당시 시스템의 메트릭 분포가 실험 대상 시스템과 다르기 때문으로 분석된다. 따라서 결함 예측 모형을 타 시스템에도 적용할 수 있도록 결함 예측 능력의 범용성을 높이기 위한 추후 연구가 필요함을 확인하였다.

Keywords

References

  1. A. Marcus, D. Poshyvanyk and R. Ferenc, 'Using the Conceptual Cohesion of Classes for Fault Prediction in Object-Oriented Systems,' IEEE Transactions on Software Engineering, Vol.34, No.2, pp.287-300, 2008 https://doi.org/10.1109/TSE.2007.70768
  2. H.M. Olague, L.H. Etzkorn, S. Gholston and S. Quattlebaum, 'Empirical Validation of Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Developed Using Highly Iterative or Agile Software Development Processes,' IEEE Transactions on Software Engineering, Vol.33, No.6, pp.402, 2007 https://doi.org/10.1109/TSE.2007.1015
  3. Y. Zhou and H. Leung, 'Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity Faults,' IEEE Transactions on Software Engineering, Vol.32, No.10, pp.771-789, 2006 https://doi.org/10.1109/TSE.2006.102
  4. T. Gyimothy, R. Ferenc and I. Siket, 'Empirical Validation of Object-Oriented Metrics on Open Source Software for Fault Prediction,' IEEE Transactions on Software Engineering, Vol.31, No.10, pp.897-910, 2005 https://doi.org/10.1109/TSE.2005.112
  5. R. Subramanyam, M.S. Krishnan, 'Empirical Analysis of CK Metrics for Object-Oriented Design Complexity: Implications for Software Defects,' IEEE Transactions on Software Engineering, Vol.29, No.4, pp.297-310, 2003 https://doi.org/10.1109/TSE.2003.1191795
  6. G. Succi, W. Pedrycz, M. Stefanovic, and J. Miller 'Pratical Assessment of the Models ofr Identification of Defect-Prone Classes in Object-Oriented Commercial Systems Using Design Metrics,' Journal of Systems and Software , Vol.65, No.1, pp. 1-12, 2003 https://doi.org/10.1016/S0164-1212(02)00024-9
  7. K. El Emam, S. Benlarbi, N. Goel and S.N. Rai, 'The Confounding Effect of Class Size on the Validity of Object- Oriented Metrics,' IEEE Transactions on Software Engineering, Vol.27, No.7, pp.630-650, 2001 https://doi.org/10.1109/32.935855
  8. K. El Emam, W. Melo and J.C. Machado, 'The Prediction of Faulty Classes Using Object-Oriented Design Metrics,' Journal of Systems and Software, Vol.56, No.1, pp.63-75, 2001 https://doi.org/10.1016/S0164-1212(00)00086-8
  9. S. Cant, D. Jeffery and B. Henderson-Sellers, 'A Conceptual Model of Cognitive Complexity of Elements of the Programming Process,' Information and Software Technology, Vol.37, No.7, pp.351-362, 1995 https://doi.org/10.1016/0950-5849(95)91491-H
  10. S.R. Chidamber, C.F. Kemerer and C. Mit, 'A Metrics Suite for Object Oriented Design,' IEEE Transactions on Software Engineering, Vol.20, No.6, pp.476-493, 1994 https://doi.org/10.1109/32.295895
  11. F.B. Abreu, M. Goulao and R. Esteves, 'Toward the Design Quality Evaluation of Object-Oriented Software Systems,' Proceedings, 5th International Conference. Software Quality, pp.44-57, 1995
  12. A.L. Baroni and F.B. Abreu, 'Formalizing Object-Oriented Design Metrics upon the UML Meta-Model,' Proceedings, Brazilian Symposium on Software Engineering, Gramado-RS, Brazil, 2002
  13. K. El-Emam, 'Object-Oriented Metrics: A Review of Theory and Practice,' Advances in Software Engineering: Topics in Comprehension, pp.23-50, 2002
  14. B. Henderson-Sellers, 'Object-Oriented Metrics: Measures of Complexity,' Upper Saddle River, N.J.: Prentice Hall, 1996
  15. W. Li and S. Henry, 'Object-Oriented Metrics that Predict Maintainability,' Journal of Systems and Software, Vol.23, No.2, pp.111-122, 1993 https://doi.org/10.1016/0164-1212(93)90077-B
  16. J.K. Mark Lorenz, 'Object-Oriented Software Metrics: a practical guide,' Prentice Hall, 1994
  17. L.C. Briand, J.W. Daly and J. Wust, 'A Unified Framework for Cohesion Measurement in Object-Oriented Systems,' Empirical Software Engineering, Vol.3, No.1, pp.65-117, 1998 https://doi.org/10.1023/A:1009783721306
  18. V.R. Basili, L.C. Briand, W.L. Melo, 'A Validation of Object-Oriented Design Metrics as Qualityindicators,' IEEE Transactions on Software Engineering, Vol.22, No.10, pp.751-761, 1996 https://doi.org/10.1109/32.544352
  19. S. Watanabe, H. Kaiya and K. Kaijiri, 'Adapting a Fault Prediction Model to Allow Inter Languagereuse,' in Proceedings of the 4th international workshop on Predictor models in software engineering, pp.19-24, 2008 https://doi.org/10.1145/1370788.1370794
  20. R. Shatnawi and W. Li, 'The Effectiveness of Software Metrics in Identifying Error-Prone Classes in Post-Release Software Evolution Process,' Journal of Systems and Software, Vol.81, No.11, pp.1868-1882, 2008 https://doi.org/10.1016/j.jss.2007.12.794
  21. L.C. Briand, S. Morasca and V.R. Basili, 'Property-Based Software Engineering Measurement,' IEEE Transactions on Software Engineering, Vol.22, No.1, pp.68-86, 1996 https://doi.org/10.1109/32.481535
  22. M. Hitz and B. Montazeri, 'Chidamber and Kemerer's Metrics Suite: a Measurement Theory Perspective,' IEEE Transactions on Software Engineering, Vol.22, No.4, pp.267-271, 1996 https://doi.org/10.1109/32.491650
  23. L.C. Briand, W.L. Melo and J. Wust, 'Assessing the applicability of fault-proneness models across Object-Oriented software projects,' IEEE Transactions on Software Engineering, Vol.28, No.7, pp.706-720, July, 2002 https://doi.org/10.1109/TSE.2002.1019484
  24. S. Quattlebaum, 'A Comparison of the Results of Object- Oriented Metrics in C++ and Java,' MS Thesis, Univ. of Alabama in Huntsville, 2004
  25. Columbus, FrontEndART.ltd, http://www.frontendart.com/columbus.php
  26. NASA IV&V FACILITY, Metrics Data Program, http://mdp.ivv.nasa.gov/repository.html
  27. PROMISE., PROMISE data sets, http://promisedata.org

Cited by

  1. Bayesian Network-based Probabilistic Management of Software Metrics for Refactoring vol.43, pp.12, 2016, https://doi.org/10.5626/JOK.2016.43.12.1334
  2. Software component identification and selection: A research review pp.00380644, 2018, https://doi.org/10.1002/spe.2656