DOI QR코드

DOI QR Code

Biosorption of Metal Ions by Seaweed Alginate, Polyguluronate, and Polymannuronate

알긴산, 폴리글루론산 및 폴리만뉴론산에 의한 금속이온의 흡착

  • Published : 2009.05.30

Abstract

Based on $P_{1/2}$ values, relative affinities of alginate, polyguluronate, and polymannuronate for metal ions are, in order, as follows; 1) seaweed alginate: $Cu^{2+}$ > $Cd^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Zn^{2+}$ > $Sr^{2+}$ > $Ca^{2+}$ > $Co^{2+}$ >> $Cr^{6+}$ > $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, 2) polyguluronate: $Cd^{2+}$ > $Cu^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Ca^{2+}$ > $Sr^{2+}$, $Zn^{2+}$, $Co^{2+}$ >> $Mn^{2+}$ > $Cr^{6+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, and 3) polymannuronate: $Cd^{2+}$, $Cu^{2+}$ > $Fe^{3+}$ > $Pb^{2+}$ > $Ca^{2+}$ > $Zn^{2+}$ > $Sr^{2+}$ > $Co^{2+}$ > $Cr^{6+}$ >> $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1 g of seaweed alginate, were measured as $363.5{\pm}45.0$, $226.3{\pm}9.2$, $1,299.4{\pm}$81.3, 500.7${\pm}$27.7, and 165.9${\pm}$11.4 mg, respectively. Amounts of the metal ions, $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, and $Zn^{2+}$, bound to 1g of polyguluronate, were 354.5${\pm}$26.5, 177.6${\pm}$8.7, 1,288.6${\pm}$60.1, 424.0${\pm}$7.4, and 140.2${\pm}$28.5 mg, respectively, whereas those bound to 1 g of polymannuronate were 329.0${\pm}$10.3, 206.9${\pm}$1.9, 1,635.6${\pm}$11.1, 419.8${\pm}$12.6, and 251.0${\pm}$49.1 mg, respectively. Due to its higher solubility than alginate and higher affinity for metal ions than polyguluronate, polymannuronate can be used for bioremediation or biosorption of toxic and/or noble metal ions.

$P_{1/2}$ 값을 참고로 비교한 알긴산, 폴리글루론산 및 폴리만뉴론산의 금속이온들에 대한 상대적인 친화성은 다음과 같다; 1) 알긴산: $Cu^{2+}$ > $Cd^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Zn^{2+}$ > $Sr^{2+}$ > $Ca^{2+}$ > $Co^{2+}$ >> $Cr^{6+}$ > $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, 2) 폴리글루론산: $Cd^{2+}$ > $Cu^{2+}$ > $Pb^{2+}$ > $Fe^{3+}$ >> $Ca^{2+}$ > $Sr^{2+}$, $Zn^{2+}$, $Co^{2+}$ >> $Mn^{2+}$ > $Cr^{6+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$, 그리고 3) 폴리만뉴론산: $Cd^{2+}$, $Cu^{2+}$ > $Fe^{3+}$ > $Pb^{2+}$ > $Ca^{2+}$ > $Zn^{2+}$ > $Sr^{2+}$ > $Co^{2+}$ > $Cr^{6+}$ >> $Mn^{2+}$ >> $Hg^{2+}$, $Mg^{2+}$, $Rb^+$. 알기산 1 g에 흡착하는 $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, 및 $Zn^{2+}$의 양은 $363.5{\pm}45.0$, $226.3{\pm}9.2$, $1,299.4{\pm}$81.3, 500.7${\pm}$27.7 및 165.9${\pm}$11.4 mg이었으며, 폴리글루론산 1g에 흡착하는 $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, 및 $Zn^{2+}$의 양은 354.5${\pm}$26.5, 177.6${\pm}$8.7, 1,288.6${\pm}$60.1, 424.0${\pm}$7.4 및 140.2${\pm}$28.5 mg이었으나, 폴리만뉴론산 1 g에 흡착하는 $Cd^{2+}$, $Cu^{2+}$, $Fe^{3+}$, $Pb^{2+}$, 및 $Zn^{2+}$의 양은 329.0${\pm}$10.3, 226.9${\pm}$1.9, 1,635.6${\pm}$11.1, 419.8${\pm}$12.6 및 251.0${\pm}$49.1 mg이었다. 폴리만뉴론산은 알긴산보다 높은 용해도와 폴리글루론산보다 높은 금속이온에 대한 친화성 때문에 독성이 높은 중금속이나 경제성이 높은 금속을 선택적으로 분리하는 데 사용할 수 있을 것이다.

Keywords

References

  1. Darnall, D. W., B. Greene, M. T. Henzl, T. M. Hosea, R. A. McPherson, J. Sneddon, and M. D. Alexander. 1986. Selective recovery of gold and other metal ions from an algal biomass. Environ. Sci. Technol. 20, 206-208 https://doi.org/10.1021/es00144a018
  2. Cho, K. J., Y. J. Choi, S. C. Ahn, M. Y. Baik, and B. Y. Kim. 2008. Encapsulation with oyster hydrolysate using alginate. J. Life Sci. 18, 708-714
  3. Dubois, M., K. A. Gillus, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for sugars and related substances. Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  4. Gacesa, P., A Squire, and P. J. Winterburn. 1983. The determination of the uronic acid composition of alginates by anion-exchange liquid chromatography. Carbohydr. Res. 118, 1-8 https://doi.org/10.1016/0008-6215(83)88029-X
  5. Greene, B., M. T. Henzl, J. M. Hosea, and D. W. Darnall. 1986. Elimination of biocarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vugaris. Biotechnol. Bioeng. 28, 764-767 https://doi.org/10.1002/bit.260280519
  6. Haug, A. 1961. The affinity of some divalent metals to different type of alginates. Acta Chem. Scand. 15, 1794-1795 https://doi.org/10.3891/acta.chem.scand.15-1794
  7. Haug, A. and B. Larsen. 1962. Quantitative determination of the uronic acid composition of alginates. Acta Chem. Scand. 16, 1908-1918 https://doi.org/10.3891/acta.chem.scand.16-1908
  8. Haug, A. and O Smidsrod. 1965. Fractionation of alginates by precipitation with calcium and magnesium ions. Acta Chem. Scand. 19, 1221-1226 https://doi.org/10.3891/acta.chem.scand.19-1221
  9. Holan, Z. R., B. Volesky, and I. Prasetyo. 1993. Biosorption of cadmium by biomass of marine algae. Bioechnol. Bioeng. 41, 819-825 https://doi.org/10.1002/bit.260410808
  10. Jang, L. K., W. R. Brand, M. Resong, W. Mainieri, and G. G.. Geesey. 1990. Feasibility of using alginate to absorb dissolved copper. Water Res. 24, 889-897 https://doi.org/10.1016/0043-1354(90)90139-W
  11. Jang, L. K., S. I. Lopez, S. L. Eastman, and P. Pryfogle. 1991. Recovery of copper and cobalt by biopolymer gels. Biotechnol. Bioeng. 37, 266-273 https://doi.org/10.1002/bit.260370309
  12. Lee, D. S., H. R. Kim, and J. H. Pyeun. 1998. Effect of low-molecularization on rheological properties of alginate. J. Kor. Fish. Soc. 31, 82-89
  13. Lee, D. S., M. K. Shin, J. H. Pyen, and J. W. Lee. 2009. A simple method for isolation of polymannuronate and polyguluronate from alginate hydrolyzed by organic acids. J. Life Sci. 19, 34-39 https://doi.org/10.5352/JLS.2009.19.1.034
  14. Lee, J. W. 1999. Electron microscopic observation of calcium-acetylated seaweed alginate gel. J. Life Sci. 9, 45-49
  15. Lee, J. W., R. D. Ashby, and D. F. Day. 1996. Role of acetylation on metal induced precipitation of alginates. Carbohydr. Polymers 29, 337-345 https://doi.org/10.1016/S0144-8617(96)00017-3
  16. Lee, M. G., K. T. Park, and S. K. Kam. 1998. Biosorption of copper by immobilized biomass of marine brown algae (Phaeophyta) Hizikia fusiformis. J. Life Sci. 8, 208-215
  17. Lin, T. and W. Z. Hassid. 1966. Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri silva. J. Biol. Chem. 241, 5284-5297 https://doi.org/10.1104/pp.103.025981
  18. Maachi, R., M. Abousseoud, and T. Chaabane. 2001. Kinetics of biodegradation of petroleum by Pseudomonas sp. Desalination 139, 367 https://doi.org/10.1016/S0011-9164(01)00332-0
  19. Morris, E. R., D. A. Rees, and D. Thorn. 1978. Chiroptical and stoichiomtric evidence of specific primary dimerization process in alginate gelation. Carbohydr. Res. 66, 145-154 https://doi.org/10.1016/S0008-6215(00)83247-4
  20. Morris, E. R. and D. A. Rees. 1980. Competitative inhibition of interchain interactions in polysaccharide systems. J. Mol. Biol. 138, 363-374 https://doi.org/10.1016/0022-2836(80)90292-2
  21. Penman, A. and G. R. Sanderson. 1972. A method for the determination of uronic acid sequence in alginates. Carbohydr. Res. 25, 273-282 https://doi.org/10.1016/S0008-6215(00)81637-7
  22. Rees, D. A. 1972. Shapely polysaccharides. Biochem. J. 126, 257-273
  23. Smidsrod, O. and A. Haug. 1968. Dependence upon uronic acid compositon of some ion-exchange properties of alginates. Acta Chem. Scand. 26, 2563-2566 https://doi.org/10.3891/acta.chem.scand.26-2563
  24. Smidsrod, O. 1974. Molecular basis for some physical properties of alginates in the gel state. Farad. Discuss. Chem. Soc. 57, 263-274 https://doi.org/10.1039/dc9745700263
  25. Suh, J. H., M. K. Suh, and Y. H. Lee. 2006. Biosorption model and factors for removing lead to Aureobasidium pullulans being imperfect fungus. J. Life Sci. 16, 877-883 https://doi.org/10.5352/JLS.2006.16.6.877
  26. Volesky, B. 1987. Biosorbents for metal recovery. Tibtech. 5, 96-101 https://doi.org/10.1016/0167-7799(87)90027-8
  27. Voragen, A. G. J., H. A. Schols, J. A. De Vries, and W. Pilnik. 1982. High-performance liquid chromatographic analysis of uronic acids and oligogalacturonic acids. J. Chromat. 244, 327-336 https://doi.org/10.1016/S0021-9673(00)85697-6

Cited by

  1. The Optimal Production and Characteristics of an Alginate-degrading Enzyme from Vibrio sp. PKA 1003 vol.42, pp.3, 2013, https://doi.org/10.3746/jkfn.2013.42.3.434
  2. Lead Adsorption by Carboxylated Alginic Acid and Its Application in Cleansing Cosmetics vol.43, pp.5, 2010, https://doi.org/10.5657/kfas.2010.43.5.400