Abstract
Since it is difficult to extract a high flux ion beam directly at an energy of hyperthermal range ($1{\sim}100\;eV$), especially, lower than 50 eV, the ions should be neutralized into neutral particles and extracted as a neutral beam. A plasma source required to generate and efficiently transport high flux hyperthermal neutral beams should be easily scaled up and produce a high ion density (${\ge}10^{11}\;cm^{-3}$) even at a low working pressure (${\le}$ 0.3 mTorr). It is suggested that the required plasma source can be realized by Electron Cyclotron Resonance (ECR) plasmas with diverse magnetic field configurations of permanent magnets such as a planar ECR plasma source with magnetron field configuration and cylindrical one with axial magnetic fields produced by permanent magnet arrays around chamber wall. In both case of the ECR sources, the electron confinement is based on the simple mirror field structure and efficiently enhanced by electron drifts for producing the high density plasma even at the low pressure.
하이퍼써멀 영역의 에너지 ($1{\sim}100\;eV$), 특히, 50 eV 이하의 에너지를 갖는 높은($10^{16}$ particles/$cm^2\;s$ 이상) 플럭스의 이온빔을 직접 인출하기는 어렵지만, 이온을 중성화한 중성입자빔 경우에는 가능하다. 높은 플럭스의 하이퍼써멀 중성입자빔을 생성하고 효율적으로 수송하기 위해서는 낮은 플라즈마 운전압력(0.3 mTorr 이하)에서도 높은 이온밀도($10^{11}\;cm^{-3}$ 이상)를 유지할 수 있는 대면적 플라즈마 발생원이 요구된다. 이러한 하이퍼써멀 중성입자빔의 생성을 위해 요구되는 플라즈마 발생원을 구현하기 위해서는 자기장에 의한 전자가둠 방식이 도입되어야 하는데, 영구자석을 이용한 다양한 자기장 구조를 갖는 Electron Cyclotron Resonance (ECR) 플라즈마 발생 방식이 하나의 해결 방법이 될 수 있음을 제안하였다. 여기에는 마그네트론 구조를 갖는 자기장을 채택한 평면형 ECR 플라즈마 발생 방식과 원통형 플라즈마 용기 외벽 둘레에 영구자석 어레이를 설치하여 축방향 자기장을 형성하고 용기 중심부에 전자를 가두는 원통형 방식이 있다. 두 경우 모두 기본적으로 mirror field 구조에 의한 전자 가둠을 기반으로 하고 전자의 drift에 의해 더욱 효율적으로 전자를 플라즈마 공간에 가두는 방식을 도입하고 있어서 낮은 운전압력에서도 높은 밀도의 플라즈마를 발생시키고 유지할 수 있다.