SPECTRAL METHODS AND HERMITE INTERPOLATION ON ARBITRARY GRIDS

  • Jung, H.S. (Department of Mathematics Education, Sungkyunkwan University) ;
  • Ha, Y.S.
  • Published : 2009.05.31

Abstract

In this paper, spectral scheme based on Hermite interpolation for solving partial differential equations is presented. The idea of this Hermite spectral method comes from the spectral method on arbitrary grids of Carpenter and Gottlieb [J. Comput. Phys. 129(1996) 74-86] using the Lagrange interpolation.

Keywords

References

  1. M. H. Carpenter and D. Gottlieb , Spectral Methods on Arbitrary grids., J. Comput. Phys. 129, (1997), pp.74–-86. https://doi.org/10.1006/jcph.1996.0234
  2. M. H. Carpenter, D. Gottlieb, and S. Abarbanel, Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high- order compact schemes., J. Comput. Phys. 111, (2) (1994), pp 220–-236. https://doi.org/10.1006/jcph.1994.1057
  3. Wai Sun Don and D. Gottlieb, The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points., SIAM J. Numer. Anal. 31, (1994), pp 1519–-1534. https://doi.org/10.1137/0731079
  4. D. Furano and D. Gottlieb, A new method of imposing boundary conditions in pseudospec- tral approximations of hyperbolic equations., Math. Comp. 51, (1988), pp 599–-613. https://doi.org/10.1090/S0025-5718-1988-0958637-X
  5. D. Furano and D. Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment., Math. Comp. 57, (1991), pp 585–-596. https://doi.org/10.1090/S0025-5718-1991-1094950-6
  6. D. Gottlieb, The stability of pseudospectral-Chebyshev methods., Math. Comp. 36, (1981), pp 107–-118. https://doi.org/10.1090/S0025-5718-1981-0595045-1
  7. G. Szego, Orthogonal Polynomials., Amer. Math. Soc. Colloq. Publ., 23, American Mathematical Society, Providence, RI, (1975).