ROBUST CROSS VALIDATIONS IN RIDGE REGRESSION

  • Jung, Kang-Mo (Department of Informatics and Statistics, Kunsan National University)
  • 발행 : 2009.05.31

초록

The shrink parameter in ridge regression may be contaminated by outlying points. We propose robust cross validation scores in ridge regression instead of classical cross validation. We use robust location estimators such as median, least trimmed squares, absolute mean for robust cross validation scores. The robust scores have global robustness. Simulations are performed to show the effectiveness of the proposed estimators.

키워드

참고문헌

  1. D. L. Donoho and P. J. Huber, The notion of breakdown point. In A Festschrift for Erich Lehmann, Edited by P. Bickel, K. Doksum and J. L. Hodges, (1983), 157-184.
  2. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2001.
  3. A. E. Hoerl and R. W. Kennard, Ridge regression : biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55-67. https://doi.org/10.2307/1267351
  4. K.-M. Jung, A robust estimator in ridge regression, Journal of the Korean Data Analysis Society, 9 (2007), 535-543.
  5. R. H. Myers, Classical and Modern Regression with Applications, 2nd ed., Duxburry, Belmont, 1990.
  6. D. Park, Robust cross validation score, The Korean Communications in Statistics, 12 (2005), 413-423. https://doi.org/10.5351/CKSS.2005.12.2.413
  7. P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, John Wiley, New York, 1987.
  8. M. Stone, Cross-validatory choice and assessment of statistical predictions, J. of the Royal Statist. Soc., B, 36 (1974), 111-147.
  9. G. Wahba, G. H. Golub and C. G. Heath, Generalized cross validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223. https://doi.org/10.2307/1268518
  10. E. Walker and J. B. Birch, Influence measures in ridge regression, Technometrics, 30 (1988), 221-227. https://doi.org/10.2307/1270168
  11. F. Wang and D. Scott, The L1 method for robust nonparametric regression, J. of the Amer. Statist. Assoc., 89 (1994), 249-260.