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ROBUST CROSS VALIDATIONS IN RIDGE REGRESSION

KANG-MO JUNG

ABSTRACT. The shrink parameter in ridge regression may be contami-
nated by outlying points. We propose robust cross validation scores in
ridge regression instead of classical cross validation. We use robust lo-
cation estimators such as median, least trimmed squares, absolute mean
for robust cross validation scores. The robust scores have global robust-

ness. Simulations are performed to show the effectiveness of the proposed
estimators.
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1. Introduction

We consider the regression problem of predicting y € R from independent
variables x € R?, where the number of observations is n. When we take a linear
form u + x¥'3, where 3 € RP for predicting the response variable, it is called
linear regression model. Ridge regression (Hoerl and Kennard, 1970) shrinks
the parameter 3 by imposing a penalty on the size of coefficients. That is, we
minimize over 3, a criterion of the form

kt2
D wi—p—x8)7+2878 (1)
i=1
for a regularized parameter A € [0, 0o). Ridge regression is a regularized version
of least squares regression using Lo penalty on coefficient vector.

The criterion (1) uses a least squares method. It is well known that a least
squares is very sensitive to a single outlier. Thus it needs a robust estimator of
ridge regression (Jung, 2007). As A ranges from 0 to oo, the parameter 3(\)
makes a path in R?. The parameter regulates the amount between penalty
of regression parameter and residual sum of squares. The parameter A should

Received October 2, 2008. Revised February 4, 2009. Accepted February 17, 2009.
© 2009 Korean SIGCAM and KSCAM .

903



904 Kang-Mo Jung

be chosen by a disciplined way. It is obvious that we choose A\ minimizes the
mean squared error of 3. There are so many results on the choice of the tuning
parameter in nonparametric regression models as well as penalized regressions
(Hastie et al., 2001). The cross validation method (Stone, 1974) is the most
popular, which is to choose A minimizing the classical cross validation (CCV)
score function

1 ¢ 2
CCV)\ = n izzl(yz y(z)) ’ (2)
where §;) is the estimate of the ith response variable based on the data omitting
the ith observation. It is called ‘leave-one-out’ version of §;. Suppose that the
ith observation was outlier. The estimate §;) is far away from y;, so the score
function (2) becomes some large. As least squares estimator is sensitive to
outliers, so is the classical score function (2).

Wang and Scott (1994) proposed the absolute cross validation, and Park
(2005) studied several robust score functions in nonparametric regressions. We
can not find the study on robust score functions in ridge regression. In this
article we propose robust score functions like the classical cross validation score
function.

Section 2 gives several robust score functions in ridge regression. Classical
cross validation used the sample mean. We proposed robust location estimators
instead of the sample mean. And we describe the properties of the suggested
robust score functions. Section 3 gives a small simulation to illustrate the
effectiveness of the proposed estimator. Simulation results show that the pro-
posed estimator seems to be more efficient than the classical cross validation
when some of errors are contaminated. Also we can observe that the proposed
method is robust for outlying observations. in ridge regression.

2. Robust score functions

The ridge regression solution for (1) can be written as the closed form

A id -1

B = (XTX+ )\I) X7y, 3)
This estimator is more or less stable than least squares estimator when the
predictors has multicollinearity. The key problem is how to find the shrinkage
parameter . There are many approaches for choosing the value of A (see
Meyers, 1986). The most popular criterion is cross validation in (2). Then by
the result of Walker and Birch (1988) equation (2) becomes

n N 2
1 Yi —Yi
CCV, == 4

i=1

where Hj; is the ith diagonal element of the hat matrix Hy = X(XTX +

-1
)\Ip) XT. Wahba et al. (1979) suggested the generalized cross validation
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criterion (GCV) by substituting the denominator of (4) by 1 — Z H;;/n. The

GCV criterion can be used to solve a wide variety of problems. \

Equation (4) is the sample mean for 22 = ((yl —9:)/(1 - HZ)) . It is usual
that the sample mean among location estimators is sensitive to outliers. We
need a robust version of cross validation criterion to choose the tuning parameter
in the ridge regression model. In particular even when the data has a single
leverage point, we should use a robust version of cross validation. Because the
leverage point has a large influence on the projection matrix H{A).

We propose several robust versions of (4) as following

MEDCYV, = median 2}, (5)
L&
T =_ 2 6
SSCV, A ;zz.'m ( )
1 n
M == 1 7
ACV; = — ; el (7)

where 22, is the ith ascending order for 22, i = 1,...,n. Here h is the number
of points for summation, and it is called coverage. When h = n it becomes
CCV. Equation (5) is the median cross validation criterion (MEDCV), (6) is the
trimmed sum of squares cross validation criterion (TSSCV) and (7} is the mean
absolute cross validation (MACV). They are also alternative robust estimators
instead of the least squares estimator in linear regression (Rousseeuw and Leroy
(1987)).

The proposed criterions are motivated by the fact that the terms in (2) are
much influenced by outliers or influential observations. If the robust methods
in (5) to (7) are used, the term §;) may be less influenced by observations
having large residuals and leverages. Thus the cross validation criterions are
little influenced by those observations.

However, the denominator of z; can be influenced by observations having
large residuals or leverages if the least squares estimator is used, because the
least squares estimator is not robust. We should use a robust estimator instead
of least squares estimator. Jung (2007) suggested a robust estimator for ridge
regression using least trimmed squares estimator. And he also proposed an
algorithm for getting the estimator. Instead of the objective function (1) we
consider the sum of the smallest quantiles of squared residuals

B
D #{im + A87B, (8)
i=1
2
where 2}2 = (yl — —wiT/B) and the parameter )\ is chosen by equations (5)-(7)

with substituting z; by 2f. Here the parenthesis subscript denotes the ascending
order statistic.
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The suggested methods for choosing the shrink parameter with the criterion
(8) have several robustness properties.

Since the estimator satisfying (8) has high breakdown point for given A, the
suggested estimator has also high breakdown point. Formally the finite sample
breakdown point (Donoho and Huber, 1983) is defined by

* 3 m n n
€n(T) = min { Zlsupx, |IT(X3) — T(X™)|| = 00},

where T'(X™) is an estimator for sample X" = {X1,..., X;,} and X7, is a sam-
ple by replacing m observations of X™ with arbitrary points. Roughly the
breakdown point means the smallest fraction of a sample to make the estimator
meaningless. For example the sample mean has 1/n breakdown point. Thus
the sample mean is not robust.

The estimator from (8) is an h—sample estimate. When h = n/2, the estima-
tor has a 50% breakdown point. Thus the suggested method for selecting A has
a 50% breakdown point. However the estimator by CCV has 1/n breakdown
point. That is, it has asymptotically 0 % breakdown point.

3. Simulations

We performed a small simulation to show the robustness of the proposed
estimator of the regularized parameter (Jung, 2007). We draw m = 100 samples
of size n = 20, 50, 100 from the following model.

Yi=l+zui+z+--+op 1, +e,p=30611,

where z;;s for j = 1,...,p are distributed from N(0,100) and ¢; ~ N(0,1).
Here the correlation coefficients among predictors is 0.9. The ridge regression
is designed for tackling the multicollinearity problem. This situation needs the
ridge regression.

The simulation results are given in Table 1. The table shows that the sug-
gested robust methods are little effective than CCV. Because the errors are
normally distributed, so outliers have less influence on the regression coeffi-
cients. In this case the classical cross validation will be enough. However, the
proposed methods are alternative methods to CCV when errors are coming from
a normal distribution.

Next we performed suggested cross validations when errors are coming from ¢
distribution with degrees of freedom 2. In this case the errors has a non-normal
distribution. The simulation results are summarized in Table 2. It shows that
the suggested robust methods are superior to CCV. Especially, MACCYV is the
most effective in most cases.

Finally we conducted four cross validations when 80% of cases are generated
with N(0,1) errors, and 20% are contaminated by using an error N(10,1) We
constructed outliers in the y—direction. The results are summarized in Table
3. This table shows that our proposed methods are superior to CCV. It implies
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TaBLE 1. Efficiencies of suggested methods and classical cross
validation with normal errors.

p\n 20 50 100
MEDCV 0.833 0.821 0.680
3 TSSCV  0.774 0.639 0.683
MACV 0.909 0.926 0.902
MEDCV 0.739 0.639 0.683
6 TSSCV  0.794 0.774 0.758
MACV 0990 0.940 0.863
MEDCV 0.689 0.569 0.685
11 | TSSCV  0.881 0.730 0.873
MACV  0.965 0.871 0.949

TABLE 2. Efficiencies of suggested methods and classical cross
validation with ¢-distribution errors.

p\n 20 50 100
MEDCV 0.863 0.758 0.830
3 TSSCV  1.265 1.004 0.917
MACV  1.458 1.030 0.989
MEDCV 0.632 0.708 0.885
6 TSSCV  1.051 1.051 0.991
MACV 1445 1.106 1.001
MEDCV 1.494 0.870 0.904
11 | TSSCV  1.875 1.016 0.996
MACV  1.863 1.033 0.998

that the suggested methods are robust from y-outliers. It shows that TSSCV
is robust for the contaminated data, while CCV is sensitive to outliers.

In conclusion CCV provides good results if the errors are normally dis-
tributed, but then the proposed robust methods also behave well when the
errors are normally distributed or contaminated.

4. Concluding remarks

Since the classical cross validation method in ridge regression is sensitive
to outliers, it requires robust estimation. We used the least trimmed squares
version of cross validation, median version and mean absolute version. The
proposed estimator has a 50% breakdown point. Small simulations imply that
the proposed estimates are robust and efficient.
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TABLE 3. Efficiencies of suggested methods and classical cross
validation with normal errors and 20% y—outliers.

\n 20 50 100
MEDCV 1.126 0.683 0.765
3 | TSSCV 2.052 1.222 1.113
MACV  1.307 0.827 0.849
MEDCV 0.706 0.674 0.759
6 | TSSCV 1.053 1.186 1.014
MACV  0.973 0.944 0.907
MEDCV 1.049 0695 0.728
11 | TSSCV 1.581 1.107 1.013
MACV  1.147 1.003 0.983
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