ROUGHNESS BASED ON INTUITIONISTIC FUZZY SUBGROUPS

  • Published : 2009.05.31

Abstract

Using the notion of intuitionistic fuzzy subgroups, its roughness is discussed. With respect to a congruence relation on a group, several properties about the lower and upper approximations of a subset of a group are investigated.

Keywords

References

  1. Y. S. Ahn, K. Hur and D. S. Kim, The lattice of intuitionistic fuzzy ideals of a ring, J. Appl. Math. Comput. 19 (2005), 551-572.
  2. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
  3. K. T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994), 137–142. https://doi.org/10.1016/0165-0114(94)90229-1
  4. K. T. Atanassov, Intuitionistic fuzzy sets. Theory and applications, Studies in Fuzziness and Soft Computing, 35. Heidelberg; Physica-Verlag 1999.
  5. B. Banerjee and D. Kr. Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math. 11(1) (2003), 139–155.
  6. R. Biswas and S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42 (1994), no. 3, 251–254.
  7. B. Davvaz, Roughness based on fuzzy ideals, Inform. Sci. 176 (2006), 2417–2437. https://doi.org/10.1016/j.ins.2005.10.001
  8. W. A. Dudek, Y. B. Jun and H. S. Kim, Rough set theory applied to BCI-algebras, Quasigroups Related Systems 9 (2002), 45–54.
  9. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy ideals of a ring, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 12 (2005), 193–209.
  10. K. Hur, H. W. Kang and H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Math. J. 25 (2003), 19–41.
  11. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy cosets, Honam Math. J. 26 (2004), 559–587.
  12. Y. B. Jun, Roughness of ideals in BCK-algebras, Sci. Math. Jpn. 7 (2002), 115–119.
  13. Y. B. Jun and C. H. Park, Intuitionistic fuzzy ideals in intra-regular rings, Sci. Math. Jpn. Online 13 (2006), 1221–1227.
  14. Y. B. Jun and C. H. Park, Intrinsic product of intuitionistic fuzzy subrings/ideals in rings, Honam Math. J. 28(4)(2006), 439–469
  15. Y. B. Jun, C. H. Park and S. Z. Song, Rough set theory applied to intuitionistic fuzzy ideals in rings, J. Appl. Math. Computing 25(1-2) (2007), 551–562.
  16. N. Kuroki, Rough ideals in semigroups, Inform. Sci. 100 (1997), 139–163. https://doi.org/10.1016/S0020-0255(96)00274-5
  17. N. Kuroki and J. N. Mordeson, Structure of rough sets and rough groups, J. Fuzzy Math. 5 (1997), no. 1, 183–191.
  18. N. Kuroki and P. P. Wang, The lower and upper approximations in a fuzzy group, Inform. Sci. 90 (1996), 203–220. https://doi.org/10.1016/0020-0255(95)00282-0
  19. C. R. Lim and H. S. Kim, Rough ideals in BCK/BCI-algebras, Bull. Polish Acad. Sci. Math. 51 (2003), no. 1, 59–67.
  20. Z. Pawlak, Rough sets, Int. J. Inform. Comp. Sci. 11 (1982), 341–356. https://doi.org/10.1007/BF01001956
  21. Z. Pawlak, Rough Sets, Theorical Aspects of Reasoning about Data, Kluwer Academic Publishers, Boston, 1991.
  22. F. Wang, Modeling analysis and synthesis of linguistic dynamic systems: a computational theory, in: Proceedings of IEEE International Workshop on Architecture for Semiotic Modeling and Situtation Control in Large Complex Systems, Monterery, CA, 27-30 August 1995, 173–178.
  23. F. Wang, Outline of a computational theory for linguistic dynamic systems: toward computingwith words, Int. J. Intell. Contr. Syst. 2 (1998), 211–224.
  24. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  25. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, II, III, Inform. Sci. 8(9) (1975), 199–249, 301–357, 43–80.
  26. L. A. Zadeh, Fuzzy logic = computing with words, IEEE Trans. Fuzzy Syst. 4 (1996), 103–111. https://doi.org/10.1109/91.493904