Study of Crack Propagation and Absorbed Energy in Heat Affected Zone Using a Finite Element Method

유한요소법을 이용한 용접열영향부의 균열진전 및 샤르피 흡수에너지 연구

  • Received : 2009.09.24
  • Accepted : 2009.11.23
  • Published : 2009.12.30

Abstract

In this study, Charpy impact test and numerical studies were performed to examine the effects of failure behavior and energy absorption on the notch position. For this purpose, carbon steel plate(SA-516 Gr. 70) with thickness of 25mm usually used for pressure vessel was welded by SMAW(Shielded Metal-Arc Welding)method and specimens were fabricated from the welded plate. The Charpy impact tests were then performed with specimens having different notch positions varying within HAZ. A series of three-dimensional FE analysis which simulates the Charpy test and crack propagation are carried out as well. We divided HAZ into two, three and four regions to apply mechanical properties of HAZ to FE-analys. Results reveal that the absorbed energies during impact test depend significantly on the notch position. To obtain the results of reliability, HAZ should be divided into at least three regions.

본 논문은 샤르피 충격실험과 유한요소법를 이용하여 노치위치에 따른 파괴거동과 흡수에너지의 영향을 평가하였다. 본 연구자는 쉴드메탈아크 용접방법으로 두께가 25mm인 압력용기용강(SA-516 Gr. 70)을 용접하였고, 이 용접된 평판으로 샤르피 시편을 제작하였다. 샤르피 충격실험에서는 용접열영향부(HAZ)에서 노치위치가 다른 시편이 사용되었다. 그리고 본 연구자는 유한요소법을 이용하여 샤르피 충격실험에서의 균열진전을 모사하였다. 용접열영향부(HAZ)의 기계적 물성을 유한요소해석에 적용하기 위해 HAZ를 2개 영역, 3개 영역 그리고 4개 영역으로 나누었다. 본 연구결과에서는 샤르피 충격실험의 흡수에너지가 노치위치에 의존적이라는 것을 보여주었다. 또한 샤르피 용접시편에서 신뢰성 있는 유한요소해석 결과를 얻기 위해서는 용접열영향부를 적어도 3개 이상의 영역으로 나누어야 한다는 결과를 얻었다.

Keywords

References

  1. Bernauer, G., Brocks, W. (2002) Micro-Mechanical Modeling of Ductile Damage and Tearing Results of a European Numerical Round Robin, Fatigue & Fracture of Engineering Materials and Structures, 25, pp.363-384 https://doi.org/10.1046/j.1460-2695.2002.00468.x
  2. Chang, Y.S., Lee, T.R. Choi, J.B. Seok, C.S. Kim, Y.J. (2006) Evaluation of Crack Length and Thickness Effects of Fracture Specimen using Damage Mechanics, Journal of the Korea Society of Precision Engineering, 23(4), pp.116-123
  3. Charpy, G. (1901) Note Sur L'Essai Des M$\'{e}$taux $\'{a}$ La Flexion Par Choc de Barreaux Entaill$\'{e}$s, Comp Tend Soc Ingnr Civil Franvce, pp.848-877
  4. Gurson, A.L. (1977) Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1-Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Material and Technology, 99, pp.2-15 https://doi.org/10.1115/1.3443401
  5. Hong, J.K., Son, Y.H., Park, J.H., Lee, B.H., Yoon, S.C., Kang, C.Y. (2008) Effects of Notch Location on Heat-affected Zone Impact Properties of SA-516 Steels, Journal of Power and Energy Systems, 2(2), pp.834-844 https://doi.org/10.1299/jpes.2.834
  6. Jang, Y.C., Hong, J.K., Park, J.H, Kim, D.W., Lee, Y. (2008) Effect of Notch Position of the Charpy Impact Sepcimen on the Failure Behavior in Heat Affected Zone, Journal of Materials Processing Technology, 201, pp.419-424 https://doi.org/10.1016/j.jmatprotec.2007.11.272
  7. Kang, S.Y., Kim. S., Oh, S.J., Kwon, S.J., Lee, S., Kim, J.H., Hong, J.H. (1999) Correlation of Microstructure and Impact Toughness of Heat Affected Zones of SA 508 Steel, J. Kor. Inst. Met. & Mater., 37(4), pp.423-434
  8. Kim, J.H., Yoon, E.P. (1998) Notch Position in the HAZ Specimen of Reactor Pressure Vessel Steel, Journal Nuclear Materials, 257(3), pp.303-308 https://doi.org/10.1016/S0022-3115(98)00451-6
  9. Schmitt, W., Sun, D.Z., Blauel, J.G. (1997) Damage Mechanics Analysis (Gurson model) and Experimental Verification of the Behaviour of a Crack in a Weld-Cladded Component, Nuclear Engineering and Design, 174, pp.237-246 https://doi.org/10.1016/S0029-5493(97)00135-0
  10. Tvergaard, V. (1981) Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions, International Journal of Fracture, 17, pp.389-407 https://doi.org/10.1007/BF00036191
  11. Tvergaard, V. (1982) Influence of Void Nucleation on Ductile Shear Fracture at a free Surface, Journal of the mechanics and physics of solids, 30(6), pp.399-425 https://doi.org/10.1016/0022-5096(82)90025-4
  12. Tvergaard, V. (1982) On Localization in Ductile Materials Containing Spherical Voids, International Journal of Fracture, 18(4), pp.237-251 https://doi.org/10.1007/BF00015686
  13. Tvergaard, V., Needleman, A. (1984) Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica, 32(1), pp.157-169 https://doi.org/10.1016/0001-6160(84)90213-X
  14. Tvergaard, V., Needleman, A. (1988) Analysis of the Charpy V-notch test for welds, Engineering Fracture Mechnics, 65(6), pp.627-643 https://doi.org/10.1016/S0013-7944(99)00146-0
  15. Tvergaard, V., Needleman, A. (2004) 3D Analyses of the Effect of Weld Orientation in Charpy Specimens, Engineering Fracture Mechnics, 71(15), pp.2179-2195 https://doi.org/10.1016/j.engfracmech.2003.12.002