Failure Study for Knee Joint Through 3D FE Modeling Based on MR Images

자기공명영상 기반 3차원 유한요소모델링을 통한 무릎관절의 파손평가

  • 배지용 (전남대학교 기계공학과) ;
  • 박진홍 (전남대학교 기계공학과) ;
  • 송성근 (전남대학교 기계공학과) ;
  • 박상진 (화순전남대학교병원 관절센터) ;
  • 전인수 (전남대학교 기계시스템공학부) ;
  • 송은규 (화순전남대학교병원 관절센터)
  • Received : 2009.10.06
  • Accepted : 2009.12.04
  • Published : 2009.12.30

Abstract

In this study, the femur, the tibia, the articular cartilage and the menisci are three dimensionally reconstructed using MR images of healthy knee joint in full extension of 26-year-old male. Three dimensional finite element model of the knee joint is fabricated on the reconstructed model. Also, the FE models of ligaments and tendons are attached on the biologically suitable position of the FE model. Bones, articular cartilages and menisci are considered as homogeneous, isotropic and linear elastic materials, and ligaments and tendons are modeled as truss element and nonlinear elastic springs. The numerical results show the contact pressure and the von Mises stress distribution in the soft tissues such as articular cartilages and menisci which can be regarded as important parameters to estimate the failure of the tissues and the pain of the patients.

본 연구에서는 먼저 완전 신전상태의 병변이 없는 26세 남자의 자기공명영상이미지를 기반으로 대퇴골, 경골, 관절연골, 반월상 연골의 정밀한 3차원 재구축을 실시하였다. 재구축된 무릎모델에 인대와 건을 생리학적으로 적합한 위치에 부착시켜 3차원 유한요소모델을 완성시켰다. 뼈, 관절연골, 반월상 연골은 균질성, 등방성 선형탄성거동을 보이는 것으로 고려하였으며, 인대와 건은 트러스 요소와 선형, 비선형 스프링 요소를 사용하여 모델링하였다. 제작된 무릎관절의 유한요소모델을 ABAQUS를 사용하여 비선형 접촉해석을 수행하였다. 수치해석결과로서 조직의 손상과 환자의 통증을 추정하기 위한 중요매개변수로 간주될 수 있는 관절연골과 반월상연골의 접촉압력과 von Mises 응력분포를 계산하였으며, 관절연골과 반월상 연골의 접촉압력과 von Mises 응력분포를 분석하여 무릎관절에 대한 파손평가를 실시하였다.

Keywords

References

  1. Bendjaballah, M.Z., Shirazi-Adl, A., Zukor, D.J. (1995) Biomechanics of the Human Knee Joint in Compression : Reconstruction, Mesh Generation and Finite Element Analysis, The Knee, 2(2), pp.69-79 https://doi.org/10.1016/0968-0160(95)00018-K
  2. Bendjaballah, M.Z., Shirazi-Adl, A., Zukor, D.J. (1997) Finite Element Analysis of Human Knee Joint in Varus-Valgus, Clin. Biomech., 12(3), pp.139-148 https://doi.org/10.1016/S0268-0033(97)00072-7
  3. Bingham, J.T., Papannagari, R., Van de Velde, S.K., Gross, C., Gill, T.J., Felson, D.T., Rubash, H.E., Li, G. (2008) In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint, Rheumatology, 47(11), pp.1622-1627 https://doi.org/10.1093/rheumatology/ken345
  4. Blankevoort, L., Kuiper, J.H., Huiskes, R., Grootenboer, H.J. (1991) Articular Contact in a Three-Dimensional Model of the Knee, J. Biomech., 24, pp.1019-1031 https://doi.org/10.1016/0021-9290(91)90019-J
  5. Butler, D.L., Kay, M.D., Stouffer, D.C. (1986) Comparison of Material Properties in Fascicle-Bone Units from Human Patellar Tendon and Knee Ligaments, J. Biomech., 19, pp.425-432 https://doi.org/10.1016/0021-9290(86)90019-9
  6. Donahue, T.L., Hull, M.L., Rashid, M.M., Jacobs, C.R. (2002) A Finite Element Model of the Human Knee Joint for the Study of Tibio-femoral Contact, ASME J. Biomech. Eng., 124(3), pp.273-280 https://doi.org/10.1115/1.1470171
  7. Frank, H.N. (1994) Attlas of human anatomy; second edition, vartis, pp.472-487
  8. LeRoux, M.A., Setton, L.A. (2002) Experimental Biphasic Fem Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension, J. Biomech. Eng., 124, pp.315-321 https://doi.org/10.1115/1.1468868
  9. Li, G., Gil, J., Kanamori, A., Woo, S.L. (1999) A Validated Three Dimensional Computational Model of a Human Knee Joint, J. Biomech. Eng., 121, pp.657-662 https://doi.org/10.1115/1.2800871
  10. Li, G., Lopez, O., Rubash, H. (2001) Variability of a Three-Diemensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis. J. Biomech. Eng., 123, pp.341-346 https://doi.org/10.1115/1.1385841
  11. $P{\'{e}}ri{\'{e}}$, D., Hobatho, M.C. (1998) In vivo Determination of Contact Areas and Pressure of the Femorotibial Joint Using Non-Linear Finite Element Analysis, Clin Biomech., 13(6), pp.394-402 https://doi.org/10.1016/S0268-0033(98)00091-6
  12. Pe$\~{n}$na, E., Calvo, B., Martiinez, M.A., Palanca, D., Doblar$\'{a}$e, M. (2005) Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics, Clin Biomech., 20(5), pp.498-507 https://doi.org/10.1016/j.clinbiomech.2005.01.009
  13. Sarathi, K.P., Lewis G. (2007) Influence of three Variables on the Stresses in a three-Dimensional Model of a Proximal Tibia-Total Knee Implant Construct, BIomed Mater Eng., 17(1), pp.19-28
  14. St$\"{a}$aubli, H.U., Schatzmann, L., Brunner, P., Rinc$\'{o}$on, L., Nolte, L.P. (1999) Mechanical Tensile Properties of the Quadriceps Tendon and Patellar Ligament in Young Adults, Am J Sports Med., 27, pp.27-34 https://doi.org/10.1177/03635465990270011301
  15. Sathasivam, S., Walker, P.S. (1997) A Computer Model with Surface Friction for the Prediction of Total Knee Kinematics, J. Biomech., 30, pp.177-184 https://doi.org/10.1016/S0021-9290(96)00114-5
  16. Wawro, M., Fathi-Torbaghan M. (2004) A parallel Framework for the FE-based Simulation of Knee Joint Motion, IEEE Trans Biomed Eng., 51(8), pp.1490-1494 https://doi.org/10.1109/TBME.2004.827534
  17. Zielinska, B., Donahue, T.L. (2006) 3D finite Element Model of Meniscectomy : Changes in Joint Contact Behavior, J Biomech Eng., 128(1), pp.115-123 https://doi.org/10.1115/1.2132370