DOI QR코드

DOI QR Code

The Concepts of Tightness for Fuzzy Set Valued Random Variables

  • Kim, Yun-Kyong (Department of Information & Communication Engineering, Dongshin University)
  • Received : 2008.02.11
  • Accepted : 2008.05.15
  • Published : 2009.06.30

Abstract

In this paper, we introduce several concepts of tightness for a sequence of random variables taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in $R^p$ and give some characterizations of their concepts. Also, counter-examples for the relationships between the concepts of tightness are given.

Keywords

References

  1. P. Billingsley, Convergence of probability measures, Second Edition, Wiley, New York, 1999
  2. A. Colubi, J. S. Domingeuz-Menchero, M. L$\acute{o}$$\acute{i}$$D_{E}$[0, 1] representation of random upper semicontinuous functions", Proc. Amer. Math. Soc. vol. 130, pp. 3237-3242, 2002 https://doi.org/10.1090/S0002-9939-02-06429-8
  3. G. Debreu, "Integration of correspondences", Proc. 5th Berkeley Symp. Math. Statist. Prob. vol. 2, pp. 351-372, 1966
  4. P. Diamond and P. Kloeden, "Metric space of fuzzy sets", Fuzzy Sets and Systems vol. 35, pp. 241-249, 1990 https://doi.org/10.1016/0165-0114(90)90197-E
  5. P. Diamond and P. Kloeden, Metric spaces of fuzzy sets: Theory and Applications, World Scientific, Singapore, 1994
  6. T. Fan, "On the compactness of fuzzy numbers with sendograph metric", Fuzzy Sets and Systems vol. 143, pp. 471-477, 2004 https://doi.org/10.1016/S0165-0114(03)00142-8
  7. G. H. Greco, "Sendograph metric and relatively compact sets of fuzzy sets", Fuzzy Sets and Systems vol. 157, pp. 286-291, 2006 https://doi.org/10.1016/j.fss.2005.07.003
  8. G. H. Greco and M. P. Moschen, "Supremum metric and relatively compact sets of fuzzy sets", Nonlinear Anal. vol. 64, pp. 1325-1335, 2006 https://doi.org/10.1016/j.na.2005.06.038
  9. H. Inoue, "A strong law of large numbers for fuzzy random sets", Fuzzy Sets and Systems vol. 41, pp. 285-291, 1991 https://doi.org/10.1016/0165-0114(91)90132-A
  10. S. Y. Joo and Y. K. Kim, "Topological properties on the space of fuzzy sets", J. Math. Anal. Appl. vol. 246, pp. 576-590, 2000 https://doi.org/10.1006/jmaa.2000.6820
  11. S. Y. Joo and Y. K. Kim, "Weak convergence and tightness for fuzzy random variables", Indian J. Pure Appl. Math. vol. 35, pp. 793-809, 2004
  12. S. Y. Joo, G. S. Choi, J. S. Kwon and Y. K. Kim, "Some results on convergence in distribution for fuzzy random sets", J. Korean Math. Soc. vol. 42, pp.171-189, 2005 https://doi.org/10.4134/JKMS.2005.42.1.171
  13. S. Y. Joo, Y. K. Kim, J. S. Kwon and G. S. Choi, "Convergence in distribution for level-continuous fuzzy random sets", Fuzzy Sets and Systems vol. 157, pp. 243-255, 2006 https://doi.org/10.1016/j.fss.2005.07.001
  14. D.S. Kim and Y. K. Kim, "Some properties of a new metric on the space of fuzzy numbers", Fuzzy Sets and Systems vol. 145, pp. 395-410, 2004 https://doi.org/10.1016/S0165-0114(03)00281-1
  15. Y. K. Kim, "Measurability for fuzzy valued functions", Fuzzy Sets and Systems vol. 129, pp. 105-109, 2002 https://doi.org/10.1016/S0165-0114(01)00121-X
  16. E. P. Klement, M. L. Puri and D. A. Ralescu, "Limit theorems for fuzzy random variables", Proc. Roy. Soc. Lond. Ser. A vol.407, pp. 171-182, 1986 https://doi.org/10.1098/rspa.1986.0091
  17. S. Li, Y. Ogura and V. Kreinovich, Limit Theorems and Applications of Set-valued and Fuzzy Setvalued Random Variables, Kluwer Academic Publishers, Dordrecht, 2002
  18. M. Ming, "Some notes on the characterization of compact sets in ($E^{n}$,$d_{p}$)", Fuzzy Sets and Systems vol. 56, pp. 297-301, 1993 https://doi.org/10.1016/0165-0114(93)90209-Z
  19. Yu. V. Prokhorov, "Convergence of random processes and limit theorems in probability theory", Theory Probab. Appl. vol. 1, pp. 157-214, 1956 https://doi.org/10.1137/1101016
  20. M. L. Puri and D. A. Ralescu, "Fuzzy random variables", J. Math. Anal. Appl. vol. 114, pp. 402-422, 1986
  21. C.Wu and Z. Zhao, "Some notes on the characterization of compact sets of fuzzy sets with $L_{p}$ metric", Fuzzy Sets and Systems vol. 159, pp. 2104-2115, 2008 https://doi.org/10.1016/j.fss.2007.11.010