DOI QR코드

DOI QR Code

국부적 특성의 Bi-modality와 Chamfer 거리를 이용한 FLIR 영상의 표적 추출

Target extraction in FLIR image using Bi-modality of local characteristic and Chamfer distance

  • 투고 : 2009.03.03
  • 심사 : 2009.05.29
  • 발행 : 2009.06.25

초록

본 논문은 bi-modality와 근접성(adjacency)을 고려하여 멤버쉽 값(membership value)을 결정하는 퍼지 임계화(fuzzy thresholding)에 기반한 FLIR(forward-looking infrared) 영상에서의 표적 추출 방법을 제안한다. Bi-modality는 국부 영역의 화소값 분포를 이용한 것으로 화소가 표적 부분으로 분류되는 정도를 나타내고, Adjacency는 각 화소가 표적 영역으로 부터 얼마나 떨어져 있는지를 나타내는 척도이다. 이 두 가지 척도를 이용하여 멤버쉽 값을 계산한 후, 퍼지 임계화 방법으로 표적을 추출한다. 제안한 표적 추출 방법의 성능을 평가하기 위해 다양한 실제 전차의 FLIR 영상을 이용하여 기존의 분할 방법과 비교한다. 실험을 통해 제안한 알고리즘이 우수한 분할 성능을 보임을 증명한다.

In this paper, target extraction method in FLIR(forward-looking infrared) images based on fuzzy thresholding which used bi-modality and adjacency to determine membership value is proposed. The bi-modality represents how a pixel is classified into a part of target using distribution of pixel values in a local region, and The adjacency is a measure to represent how each pixel is far from the target region. First, membership value is calculated using above two measures, and then fuzzy thresholding is performed to extract the target. To evaluate performance of proposed target extraction method, we compare other segmentation methods using various FLIR tank image. Experimental results show that the proposed algorithm is a good segmentation performance.

키워드

과제정보

연구 과제번호 : 표적획득지능화 연구

연구 과제 주관 기관 : 국방과학연구소, 지식경제부, 정보통신연구진흥원

참고문헌

  1. B. Bhanu, 'Automatic target recognition: state of the art survey,' IEEE Trans. Aerosp. Electron. Syst., Vol. 22, no. 4, pp. 364-379, 1981
  2. S. G. Sun and H. W. Park, 'Automatic target recognition using boundary partitioning and invariant features in forward-looking infrared images,' Opt. Eng. Vol. 42, no. 2, pp. 524-533, 2003 https://doi.org/10.1117/1.1532743
  3. M. Sezgin and B. Sankur, 'Survey over image thresholding techniques and quantitative performance evaluation,' Journal of Electronic Imaging, Vol. 13, no. 1, pp. 146-168, 2004 https://doi.org/10.1117/1.1631315
  4. A. Rosenfeld and P. De la Torre, 'Histogram concavity analysis as an aid in threshold selection,' IEEE Trans. Syst. Man Cybern, Vol. 13, pp. 231-235, 1983
  5. N. Otsu, 'A threshold selection method from gray level histograms,' IEEE Trans. Syst. Man Cybern, Vol. 9, pp. 62-66, 1979 https://doi.org/10.1109/TSMC.1979.4310076
  6. C. V. Jawahar, P. K. Biswas, and A. K. Ray, 'Analysis of fuzzy thresholding schemes,' Pattern Recognition, Vol. 33, pp. 1339-1349, 2000 https://doi.org/10.1016/S0031-3203(99)00122-3
  7. L. A. Zadeh, 'Fuzzy sets,' Inf. Control., Vol. 8, pp. 338-353, 1965 https://doi.org/10.1016/S0019-9958(65)90241-X
  8. S. K. Pal and A. Rosenfeld, 'Image enhancement and thresholding by optimization of fuzzy compactness,' Pattern Recognition Lett., Vol. 7, pp.77-86, 1988 https://doi.org/10.1016/0167-8655(88)90122-5
  9. S. K. Pal and A. Ghosh, 'Fuzzy geometry in image analysis,' Fuzzy Sets Syst., Vol. 48, pp. 23-40, 1992 https://doi.org/10.1016/0165-0114(92)90249-4
  10. S. G. Sun and H. W. Park, 'Segmentation of for ward-looking infrared image using fuzzy thresholding and edge detection,' Opt. Eng., Vol. 40, no. 11, pp. 2638-2645, 2001 https://doi.org/10.1117/1.1409563
  11. K. Haris, G. Tziritas and S. Orphanoudakis, 'Smoothing 2-D or 3-D Images Using Local Classification,' In Proceedings of EUSIPCO'94, Ediburg, September, 1994
  12. G. Borgefors, 'Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm,' IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, no. 6, 1988