DOI QR코드

DOI QR Code

고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법

Feature Extraction and Classification of High Dimensional Biomedical Spectral Data

  • 조재훈 (충북대학교 전기전자컴퓨터공학부) ;
  • 박진일 (충북대학교 전기전자컴퓨터공학부) ;
  • 이대종 (충북대학교 전기전자컴퓨터공학부) ;
  • 전명근 (충북대학교 전기전자컴퓨터공학부)
  • 투고 : 2009.01.29
  • 심사 : 2009.05.14
  • 발행 : 2009.06.25

초록

본 논문에서는 비선형 변환에 의해 입력신호를 고차원의 확장공간으로 변환한 후, 주성분분석기법(PCA)에 의해 신호의 특징을 추출하는 기법을 제안한다. 특징추출을 위해 사용되는 기존의 주성분분석기법은 입력데이터가 비선형 특성을 갖는 경우 최적의 변환행렬을 구할 수 없다는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해, 확장공간상에서 구간별로 입력데이터를 분할한 후 주성분분석기법에 의해 구간별 특징을 추출하는 서브패턴기반 주성분분석기법(SpPCA)을 적용하였다. 다음 단계인 분류단계에서는 MLP 비선형분류기를 이용하여 구간마다 추출된 특징벡터를 이용하여 기준패턴과의 유사도를 산출한다. 최종 분류단계에서는 MLP에 의해서 산출된 유사도에 기반을 둔 융합법칙에 의하여 생체 스펙트럼 패턴을 분류한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해서 향상된 인식결과를 보임을 확인하였다.

In this paper, we propose the biomedical spectral pattern classification techniques by the fusion scheme based on the SpPCA and MLP in extended feature space. A conventional PCA technique for the dimension reduction has the problem that it can't find an optimal transformation matrix if the property of input data is nonlinear. To overcome this drawback, we extract features by the SpPCA technique in extended space which use the local patterns rather than whole patterns. In the classification step, individual classifier based on MLP calculates the similarity of each class for local features. Finally, biomedical spectral patterns is classified by the fusion scheme to effectively combine the individual information. As the simulation results to verify the effectiveness, the proposed method showed more improved classification results than conventional methods.

키워드

참고문헌

  1. R. Baumgarttner, R. Somorjai, C. Bowman, T.C. Sorrell, C.E. Mountford, U. Himmelreich, 'Unsupervised feature dimension reduction for classification of MR spectra,' Magnetic Resonance Imaging 22, pp. 251-256, 2004 https://doi.org/10.1016/j.mri.2003.08.033
  2. Y.Y.B. Lee, Y. Huang, W. El-Deredy, P.J.G. Lisboa, C. Arus, P. Harris, 'Robust methodology for the discrimination of brain tumours from in vivo magnetic resonance spectra: Science, Measurement and Technology,' IEEE Proc., Vol. 147, No. 6, pp. 309-314, 2000
  3. Yu Wang, S. Van Huffel, E. Heyvaert, L. Vanhamme, N. Mastronardi, P. Van Hecke, 'Magnetic resonance spectroscopic quantitation via complex principal component analysis,' WCCC-ICSP 2000, Vol. 3, pp. 2074-2077, 2000
  4. M. Turk and A. Pentland, 'Face recognition using eigenfaces,' IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591, 1991
  5. Hong Yang, Joseph Irudayaraj and Manish M. Paradkar, 'Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy,' Food Chemistry, Vol. 93, No. 1, pp. 25-32, 2005 https://doi.org/10.1016/j.foodchem.2004.08.039
  6. Marina Vannucci, Naijun Sha and Philip J. Brown, 'NIR and mass spectra classification: Bayesian methods for wavelet-based feature selection,' Chemometrics and Intelligent Laboratory Systems, In Press, Corrected Proof, Available online 4 March 2005
  7. E.K. Tang, P.N. Suganthan, X. Yao and A.K. Qin, 'Linear dimensionality reduction using relevance weighted LDA,' Pattern Recognition, Vol. 38, No. 4, pp. 485-493, 2005 https://doi.org/10.1016/j.patcog.2004.09.005
  8. N.P. Hughes, S.J. Roberts, L. Tarassenko, 'Semisupervised learning of probabilistic models for ECG segmentation,' Engineering in Medicine and Biology Society, EMBC 2004, Vol. 1, pp. 434-437, 2004
  9. Songcan Chen, Yulian Zhu, 'Subpattern- based principal component analysis,' Pattern Recognition 37, pp. 1081-1083, 2004 https://doi.org/10.1016/j.patcog.2003.09.004
  10. Rajkiran Gottumukkal, Vijayan K. Asari, 'An improved face recognition technique based on modular PCA approach,' Pattern Recognition Letters 25, pp. 429-436, 2004 https://doi.org/10.1016/j.patrec.2003.11.005
  11. Yang-Lang Chang, Chin-Chuan Han, Fan-Di Jou, Kuo-Chin Fan, K.S. Chen, Jeng-Horng Chang, 'A modular eigen subspace scheme for high-dimensional data classification,' Future Generation Computer System 20, pp. 1131-1143, 2004 https://doi.org/10.1016/j.future.2003.11.003
  12. Nicolino J. Pizzi, 'Fuzzy pre-processing of gold standards as applied to biomedical spectra classification,' Artificial Intelligence in Medicine, Vol. 16, No. 2, pp. 171-182, 1999 https://doi.org/10.1016/S0933-3657(98)00071-2

피인용 문헌

  1. Big Data Analysis Using Principal Component Analysis vol.25, pp.6, 2015, https://doi.org/10.5391/JKIIS.2015.25.6.592