Development of Analytical Methods for Micro Levels of Naphthalene and TNT in Groundwater by HPLC-FLD and MSD

HPLC-FLD와 MSD를 이용한 지하수 중 나프탈렌 및 TNT의 미량 분석법 개발

  • Park, Jong-Sung (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon) ;
  • Oh, Je-Ill (Department of Civil and Environmental Engineering, Chung-Ang University) ;
  • Jeong, Sang-Jo (Department of Civil Engineering and Environmental Sciences, Korea Military Academy) ;
  • Choi, Yoon-Dae (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon) ;
  • Her, Nam-Guk (Department of Chemistry and Environmental Sciences, Korea Army Academy at Young-Cheon)
  • 박종성 (육군3사관학교 화학환경과학과) ;
  • 오재일 (중앙대학교 건설환경공학과) ;
  • 정상조 (육군사관학교 토목환경학과) ;
  • 최윤대 (육군3사관학교 화학환경과학과) ;
  • 허남국 (육군3사관학교 화학환경과학과)
  • Received : 2009.08.19
  • Accepted : 2009.10.05
  • Published : 2009.12.31

Abstract

Naphthalene and TNT (2,4,6-trinitrotoluene) are defined by U.S. EPA as possible carcinogenic compounds known to have detrimental effects on the aquatic ecosystem and human body. There are, however, few researches on methods of analyzing micro-levels of naphthalene and TNT dissolved in groundwater. This study introduces and evaluates the newly developed analytical methods of measuring naphthalene and TNT in groundwater by using HPLC-FLD (Fluorescence detector) and MSD (Mass detector). The MDL, LOQ and salt effect of these methods, respectively, are compared with those of conventional methods which use HPLC-UV. For the analysis of naphthalene, HPLC-FLD was set in the maxima wavelength (Ex: 270 nM, Em: 330 nM) obtained from 3D-Fluorescence to be compared with HPLC-UV in 266 nM wavelength. The MDL ($0.3\;{\mu}g/L$) and LOQ ($2.0\;{\mu}g/L$) of naphthalene by using HPLC-FLD were approximately 80 times lower than those analyzed by HPLC-UV (MDL: $23.3\;{\mu}g/L$, LOQ: $163.1\;{\mu}g/L$). HPLC-MSD were used in comparison with HPLC-UV in 230 and 254 nM wavelength for the analysis of TNT. The MDL ($0.13\;{\mu}g/L$) and LOQ ($0.88\;{\mu}g/L$) of TNT analyzed by using HPLC-MSD were approximately 130 times lower than those obtained by using HPLC-UV in 230 nM (MDL: $16.8\;{\mu}g/L$, LOQ: $117.5\;{\mu}g/L$). The chromatogram of TNT analyzed by using HPLC-UV in 230 nM displayed elevated baseline as the concentration of ${NO_3}^-$ increases beyond 21 mg/L, while the analysis using HPLC-MSD did not demonstrate any change in baseline in presence of ${NO_3}^-$ of 63.7 mg/L which is 3.5 times higher than average concentration in groundwater. In conclusion, HPLC-FLD and HPLC-MSD may be used as suitable methods for the analysis of naphthalene and TNT in groundwater and drinking water. These methods can be applied to the monitoring of naphthalene and TNT concentration in groundwater or drinking water.

나프탈렌과 TNT는 미국 환경청(U.S. EPA)에서 규정한 발암가능성 물질로(Group C), 환경으로 방출될 경우 수생태계와 인체에 심각한 영향을 주는 것으로 알려져 있다. 그러나 지하수 내 두 물질의 미량 분석법에 대한 기존연구는 매우 미비한 실정이다. 이에 본 연구에서는 HPLC-FLD(Fluorescence etector)와 MSD(Mass detector)를 이용한 지하수 내 나프탈렌 및 TNT의 미량분석법을 개발하여, MDL과 LOQ 및 이온영향을 조사하고, 현재 사용되고 있는 HPLC-UV 분석법과 비교 평가하였다. 나프탈렌의 경우, 3D-Fluorescence를 통하여 확인된 최고의 파장(Ex: 270 nM, Em: 330 nM)이 HPLC-FLD에 적용되었고, $0.3\;{\mu}g/L$의 MDL과 $2.0\;{\mu}g/L$의 LOQ가 획득되었다. 이는 현재 방법(HPLC-UV; MDL: $23.3\;{\mu}g/L$, LOQ: $163.1\;{\mu}g/L$)보다 약 80배 우수한 결과이며, U.S. EPA의 음용수 권고기준($700\;{\mu}g/L$)의 약 350배 이하까지 정량분석이 가능한 수치이다. TNT의 경우, 새롭게 제시된 HPLC-MSD로 측정한 방법(MDL: $0.13\;{\mu}g/L$, LOQ: $0.88\;{\mu}g/L$)이 HPLC-UV(MDL: $16.8\;{\mu}g/L$, LOQ: $117.5\;{\mu}g/L$ at 230 nM)보다 약 130 배 우수한 것으로 조사되었고, U.S. EPA의 음용수 권고기준($20\;{\mu}g/L$)보다 약 23배 낮은 농도까지 정량분석이 가능한 것을 확인하였다. 또한 HPLC-UV(230 nM)의 분석법은 ${NO_3}^-$ 농도가 증가할수록(특히 21 mg/L 이상) 크로마토그램의 기준선이 증가하여 정량에 방해를 주었으나, HPLC-MSD 분석법은 국내 지하수 평균 농도보다 약 3.5배인 63.7 mg/L에서도 분석의 영향 없이 안정한 크로마토그램을 보여주었다. 따라서 새롭게 제시된 HPLC-FLD와 MSD에의한 나프탈렌과 TNT 분석법은 지하수 및 음용수 미량분석에 적합하며, 관련분야 연구에 크게 도움이 될 것이다.

Keywords

References

  1. 국가지하수정보센터, GiMS, National Groundwater Information Management and Service Center, www.gims.go.kr
  2. 조정현, 배범한, 김계훈, 2008, 토양중 화학물질 HPLC 분석방법국내 표준제안 개발, 2008년 한국지하수토양환경학회 추계학술발표회, 포항공과대학교, p. 90-91
  3. 박석효, 배범한, 김민경, 장윤영, 2008, 국내 소규모 군사격장 복합오염물질(화약물질 및 중금속)의 분포 및 거동, 한국물환경학회, 24, 523-532
  4. 배범한, 조정현, 2009, 화약물질 현장검출시약 EXPRAY를 이용한 토양내 화약물질 스크리닝 및 준정량화 가능성, 한국지하수토양환경학회, 14(2), 45-53
  5. ACS committee on Environmental improvement and subcommittee on environmental analytical chemistry, 1980, Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry, Anal. Chem., 52, 2242-2249 https://doi.org/10.1021/ac50064a004
  6. ATSDR, 2005, Toxicological profile for Naphthalene, 1-Methylnaphthalene, and 2- Methylnaphthalene, U.S. Department Of Health And Human Services Public Health Service
  7. Brannon, J.M., Jenkins, T.F., Parker, L.V., Deliman, P., Gerald, J.A., Ruiz, C., Porter, B., and Davis, W.M., 2000, Procedures for determining integrity of UXO and explosives soil contamination at firing ranges. U. S. Army Corps of Engineers. ERDC TR-00-4
  8. Coopera, W.J., Nickelsena, M.G., Greenb, R.V., and Mezykc, S.P., 2002, The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation, Radiation Physics and Chemistry, 65, 571-577 https://doi.org/10.1016/S0969-806X(02)00363-8
  9. EC-JRC, 2003, European Chemicals Bureau. European Union Risk Assessment Report, naphthalene, European Commission Joint Research Centre, EUR 20763 EN, 1st priority List, (33)
  10. Gaurav, V.K., Kumar, A., Malik, A.K., Rai, P.K., 2007, SPMEHPLC:A new approach to the analysis and of explosives, J. Hazard. Mater., 147, 691-697 https://doi.org/10.1016/j.jhazmat.2007.05.054
  11. Goela, R.K., Floraa, J.R.V., and Ferryb, J., 2003, Mechanisms for naphthalene removal during electrolytic aeration, Water Research, 37, 891-901 https://doi.org/10.1016/S0043-1354(02)00376-7
  12. Hykrdov$\acute{a}$, L., Jirkovsk$\acute{y}$, J., Mailhot, G., and Bolte, M., 2002, Fe(III) photo induced and Q-$TiO_2$ photocatalysed degradation of naphthalene: comparison of kinetics and proposal of mechanism, Journal of Photochemistry and Photobiology A: Chemistry, 151, 181-193 https://doi.org/10.1016/S1010-6030(02)00014-X
  13. Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C., Deschamps, S., Corriveau, A., Thiboutot, S., Ampleman, G., Dubois, C., and Hawari, J., 2002, Detection of explosives and their degradation products in soil environments, J. Chromatogr. A, 963, 411-418 https://doi.org/10.1016/S0021-9673(02)00553-8
  14. Harvey S.D., Fellows, R.J., Cataldo, D.A., and Bean R.M., 1990, Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography, J. Chromatogr. A, 518, 361-374 https://doi.org/10.1016/S0021-9673(01)93196-6
  15. Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes, C.A., and Wahlgren, E.G., 2001, Characterization of Explosives Contamination at Military Firing Range, Tech Rep. ERDC TR-01-5, USACE Engineering Research and Development Center, Vicksburg. MS
  16. Leeson, A. and Hatzinger, P., 2007, DOD's Perspective on Development of Innovative Approaches for Treatment of Emerging Contaminants, 17th Annual Training Conference 2007 National Association of Remedial Project Managers, Baltimore, Maryland
  17. Marple, R.L. and Lacourse, W.R., 2005, A platform for on-site Environmental analysis of explosives using performance liquid chromatography with UV absorbance and photo-assisted electrochemical detection, Talanta, 66, 581-590 https://doi.org/10.1016/j.talanta.2004.11.034
  18. Maillacheruvu, K. and Safaai S., 2002, Naphthalene removal from aqueous systems by sagittarius sp., J. Environ. Sci. Health, 37(5), 845-861 https://doi.org/10.1081/ESE-120003592
  19. Psillakis, E., Goula, G., Kalogerakis, N., and Mantzavinos, D., 2004, Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation, J. Hazard. Mater., 108, 95-102 https://doi.org/10.1016/j.jhazmat.2004.01.004
  20. Palazzo, A.J. and Leggett, D.C, 1986, Effect and Disposition of TNT in a Terrestrial Plant, J. Environ. Qual., 15, 49-52 https://doi.org/10.2134/jeq1986.00472425001500010012x
  21. Ribani, M., Collins, C.H., and Bottoli, C.B.G., 2007, Validation of chromatographic methods: Evaluation of detection and quantification limits in the determination of impurities in omeprazole, J. Chromatogr. A, 1156, 201-205 https://doi.org/10.1016/j.chroma.2006.12.080
  22. Vasilyeva, G.K., Kreslavski, V.D., and Shea, P.J., 2002, Catalytic oxidation of TNT by activated carbon. Chemos. 47, 311-317 https://doi.org/10.1016/S0045-6535(01)00304-6
  23. U.S. EPA, 2004, 2004 Edition of the Drinking Water Standards and Health Advisories, EPA 822-R-04-005, Office of Water U.S. Environmental Protection Agency Washington, DC