DOI QR코드

DOI QR Code

Effects of Rapid Thermal Annealing Temperature on Performances of Nanoscale FinFETs

  • Sengupta, M. (Department of Electronic Science, University of Calcutta) ;
  • Chattopadhyay, S. (Department of Electronic Science, University of Calcutta) ;
  • Maiti, C.K. (Department of Electronics and ECE, Indian Institute of Technology)
  • Received : 2009.08.13
  • Published : 2009.12.30

Abstract

In the present work three dimensional process and device simulations were employed to study the performance variations with RTA. It is observed that with the increase in RTA temperature, the arsenic dopants from the source /drain region diffuse laterally under the spacer region and simultaneously acceptors (Boron) are redistributed from the central axis region of the fin towards the Si/SiO2 interface. As a consequence both drive current and peak cut-off frequency of an n-FinFET are observed to improve with RTA temperatures. Volume inversion and hence the flow of carries through the central axis region of the fin due to reduced scattering was found behind the performance improvements with increasing RTA temperature.

Keywords

References

  1. D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur and H.-S. P. Wong, "Device scaling limits of Si MOSFET's and their application dependencies," Proc. IEEE, Vol.89, pp.259–288, Mar., 2001 https://doi.org/10.1109/5.915374
  2. B. Yu, H. Wang, A. Joshi, Q. Xiang, E. Ibok, and M. -R. Lin, "15 nm gate length planar CMOS transistor,' in Int. Electron Devices Meeting Tech. Dig., 2001, pp.937–939 https://doi.org/10.1109/IEDM.2001.979669
  3. T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi and M. Bohr, "Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors," in Symp. VLSI Technology Dig. Tech. Papers, 2000, pp.174–175 https://doi.org/10.1109/VLSIT.2000.852814
  4. M. Nawaz, W. Molzer, P. Haibach, E. Landgarf, W. Rosner, M. Stadele, H. Luyken and A. Gencer, "Validation of 30 nm process simulation using 3D TCAD for FinFET devices," Semicond. Sci. Technol., Vol.21, pp.1111-1120, Jul., 2006 https://doi.org/10.1088/0268-1242/21/8/023
  5. A. Kranti and G. A. Armstrong, "Comparative analysis of nanoscale MOS device architechtures for RF applications,' Semicond. Sci. Technol., Vol. 22, pp.481-491, Mar., 2007 https://doi.org/10.1088/0268-1242/22/5/005
  6. A. Kranti and G. A. Armstrong, "Performance assesment of nanoscale double- and tripple-gate FinFETs", Semicond. Sci. Technol., Vol.21, pp.409-421, Feb., 2006 https://doi.org/10.1088/0268-1242/21/4/002
  7. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios and R. Chau, "Tri-Gate Fully-Depleted CMOS Transistors: Fabrication, Design and Layout," Symp. on VLSl Tech, pp.133-134, June, 2003
  8. L. Ge and J. G. Fossum, "Analytical modeling of quantization and volume inversion in thin Si-film DG MOSFETs,' IEEE Trans. Electron Devices, Vol.49, pp.287-294, Feb., 2002 https://doi.org/10.1109/16.981219
  9. Taurus $Process^{TM}$ and Taurus $Device^{TM}$ Simulators, Version. X-2005.10, Synopsys Inc
  10. ITRS 2008 , http://www.itrs.net/
  11. R. Kinder, F. Schwierz, P. Be$\check{n}$o and J. Ge$\beta$ner, 'Simulation of boron diffusion in Si and strained SiGE layers," Microelectron Jour., Vol.38, pp.576-582, Apr., 2007 https://doi.org/10.1016/j.mejo.2007.03.002
  12. C.W. Lee, S.R.N Yun, C.G Yu, J.T. Park and J.P. Colinge, "Device design guidelines for nano-scale MuGFETs," Solid state Electron., Vol.52, pp.505-510, Jan., 2007 https://doi.org/10.1016/j.sse.2006.11.013
  13. J.P. Colinge and C.A. Colinge, Physics of Semiconductor Device. California, U.S.: Kluwer Academic Publishers, 2006