Removal of As(III) and As(V) in Aqueous Phases by Fe and Mn Oxides Coated Granular Activated Carbon

철 및 망간 산화물로 코팅된 입자활성탄을 이용한 수용액 중 As(III) 및 As(V)의 제거

  • Lee, Hee-Yong (Department of Environmental Engineering, Kwandong University) ;
  • Yang, Jung-Seok (Korea Institute of Science and Technology-Gangneung Institute) ;
  • Choi, Jae-Young (Korea Institute of Science and Technology-Gangneung Institute) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Kwandong University)
  • 이희용 (관동대학교 환경공학과) ;
  • 양중석 (한국과학기술연구원 강릉분원) ;
  • 최재영 (한국과학기술연구원 강릉분원) ;
  • 이승목 (관동대학교 환경공학과)
  • Received : 2009.03.20
  • Accepted : 2009.07.14
  • Published : 2009.08.31

Abstract

The objective of this study was to evaluate the efficiency of Fe and Mn oxides coated granular activated carbons (FMOCGs) for the removal of arsenite and arsenate by oxidation and adsorption mechanisms using surface characterization and batch adsorption experiments. Within four manufactured adsorbents, Fe and Mn contents of FMOCG-1 was the highest (178.12 mg Fe/g and 11.25 mg Mn/g). In kinetic results, As(III) was removed by oxidation and adsorption with FMOCGs. Removal of arsenic by FMOCGs increased as pH value of the solution decreased. The adsorption isotherm results were well fitted with Langmuir isotherm. Adsorption amount of As(V) onto FMOCGs was higher than that of As(III) and the maximum adsorption capacities of FMOCGs for As(III) and As(V) were 1.38~8.44 mg/g and 2.91~9.63 mg/g, respectively.

본 연구에서는 수용액상의 비소를 산화 및 흡착기작을 이용하여 제거하기 위해서 철과 망간 산화물로 코팅된 입자 활성탄 (FMOCG)을 제조하고, 이의 표면특성 및 회분식 실험을 통하여 비소제거 특성을 규명하였다. 회분식 실험에서는 네 가지 코팅매질의 비소 산화 및 흡착 동역학, pH 영향, 등온흡착실험을 실시하였다. 코팅매질의 철과 망간 함량은 FMOCG-1(178.12 Fe mg/g, 11.25 Mn mg/g)가 비교적 많은 것으로 나타났다. 비소흡착 동역학을 통하여 As(III)의 경우 산화 및 흡착을 통하여 제거됨을 확인하였다. pH 영향실험 결과 pH가 낮을수록 비소의 제거율이 높아지는 것으로 나타났다. 등온흡착실험 결과는 Langmuir isotherm에 잘 적용되었으며 As(III)보다 As(V)의 흡착량이 약간 높았으며, 최대 흡착량은 1.38~8.44 mg As(III)/g과 2.91~9.63 mg As(V)/g이었다.

Keywords

References

  1. 양재규, 이성일, 유대환, 권혁기, 성준용, 소주환, 'Iron-Coated Sand의 독성 3가 비소 흡착성능', 대한환경공학회지, 25(7), 853-859(2003)
  2. Chen, W., Parette, R., Zou, J., Cannon, F. S., and Dempsey, B. A.,' Arsenic removal by iron-modified activated carbon', Water Res., 41, 1851-1858(2007) https://doi.org/10.1016/j.watres.2007.01.052
  3. Zhang, G., Qu, J., Liu, H., Liu, R., and Wu, R.,' Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal', Water Res., 41, 1921-1928(2007) https://doi.org/10.1016/j.watres.2007.02.009
  4. Zhang, G., Qu, J., Liu, H., Liu, R., and Li, Gu., 'Removal mechanism of As(Ⅲ) by a novel Fe-Mn binary oxide adsorbent: Oxidation and sorption', Environ. Sci. Technol., 41(13), 4613-4619(2007) https://doi.org/10.1021/es063010u
  5. 환경부,' 전국 폐금속광산 주변지역 토양∙수질오염실태 정밀조사결과'(2008)
  6. 김병권, 임재우, 장윤영, 양재규, '망간코팅사 종류별 독성 3가 비소의 산화특성에 한 비교 연구', 지하수토양환경, 13(2), 62-69(2008)
  7. Yang, J. K., Park, H. J., Lee, H. D., and Lee, S. M.,' Removal of Cu(Ⅱ) by activated carbon impregnated with iron(Ⅲ)', Colloids Surf. A: Physicochem. Eng. Aspects, 337, 154-158(2009) https://doi.org/10.1016/j.colsurfa.2008.12.014
  8. Gupta, V. K., Saini, V. K., and Jain, N., 'Adsorption of As(Ⅲ) from aqueous solution by iron oxide-coated sand', J. Collid Interface. Sci., 288, 55-60(2005) https://doi.org/10.1016/j.jcis.2005.02.054
  9. Dinesh, M., and Charles, U. P. Jr.,' Arsenic removal from water/ wastewater using adsorbents-A critical review', J. Hazard. Mater., 142, 1-53(2007)
  10. Mushtaque, A., and Chowdhury, R.', Arsenic crisis in bangladesh', Sci. Am., 86-91(2004)
  11. Eary, L. E., and Schramke, L. A.,' Rates of inorganic oxidation reactions involving dissolved oxygen in chemical modeling of aqueous systems', II, D. C. Melchiorand R. L. Bassett, eds., ACS Symp. Ser., 416, 379-396(1990) https://doi.org/10.1021/bk-1990-0416.ch030