아연 나노 입자와 산화아연 나노 입자의 특성과 식물독성

Characterization and Phytotoxicity of Zn, Zn Oxide Nanoparticles

  • 김성현 (이화여자대학교 에코과학부) ;
  • 백주형 (이화여자대학교 에코과학부) ;
  • 송이레 (이화여자대학교 에코과학부) ;
  • 신민주 (이화여자대학교 생명과학부) ;
  • 이인숙 (이화여자대학교 에코과학부)
  • 투고 : 2009.10.08
  • 심사 : 2009.11.17
  • 발행 : 2009.12.31

초록

나노기술이 발전하면서 나노 입자의 특성과 나노 독성에 대한 관심도 증가하고 있다. 그러나 나노 입자의 식물독성에 대한 연구는 부족하다. 본 연구에서는 Zn, ZnO 나노 입자의 각 농도 별로 오이 묘목을 수경 재배하여 식물독성을 조사하였다. 실험 결과, Zn, ZnO 나노 입자의 특성은 deionized water에서 보다 영양용액에서 응집이 더 일어났다. 오이 묘목의 생체량은 100 mg/L 이상에서 유의적으로 감소하였으며 독성은 $Zn^{2+}$> Zn> ZnO 나노 입자순으로 나타났다. TEM 사진 결과, Zn, ZnO 나노 입자는 뿌리 세포벽에 붙어 있었으며 뿌리 세포 내에서도 응집해 있는 것이 관찰되었다.

Increasing application of nanotechnology highlights the need to clarify nanotoxity and nanoparticles characterization. However, few researches have focused on phytotoxicity of nanoparticles. This study was to examine phytotoxicity on Cumumis sativus seedling and the dissolution of Zn, ZnO nanoparticles in hydroponic culture system. Results of this study; characteristics of Zn, ZnO nanoparticles are more aggregated in nutrient solution than deionized water. C. sativus biomass significantly reduced in the nutrient solution were higher than 100 mg/L, and Zn toxicity showed $Zn^{2+}$> Zn> ZnO NPs. Results of transmission electron microscopy images, Zn and ZnO nanoparticles greatly adhered onto the root cell wall and nanoparticles were observed in the root cell.

키워드

참고문헌

  1. Shah, V., and Belozerova, I., “Influence of metal nanoparticles on the soil microbial community and germination of Lettuce seeds,” Water, Air, Soil pollut., 197, 143-148(2009) https://doi.org/10.1007/s11270-008-9797-6
  2. Meulenkanp, E. A., “Synthesis and growth of ZnO nanoparticles,” J. Phys. Chem. B ., 102, 5566-5572(1998) https://doi.org/10.1021/jp980730h
  3. Serpone, N., Dondi, D., Albini, A., “Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products,” Inorg. Chim. Acta., 360, 794-802(2007) https://doi.org/10.1016/j.ica.2005.12.057
  4. Stephen, J., Klaine., “Nanomaterials in the environment,” Environ. Toxicol. Chem., 9, 1825-1851(2008)
  5. U. S. Environmental Protection Agency Home page, http://www.epa.gov./OSA/nanotech.htm, February (2007)
  6. Yang, L., and Watts, D. J., “Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles,” Toxicol. Lett., 158(2), 122-132(2005) https://doi.org/10.1016/j.toxlet.2005.03.003
  7. Lin, D., and Xing, B., “Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth,” Environ. Pollut., 150(2), 243-250(2007) https://doi.org/10.1016/j.envpol.2007.01.016
  8. 송이레, 남윤선, 이인숙, “아연, 산화 아연 나노 입자가 오이에 미치는 독성 및 생물이용성,” 대한환경공학회지, 31(7), 467-472(2009)
  9. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G., Gadd, G. E., and Casey, P. S., “Comparative toxicity of nanoparticulate ZnO, bulk ZnO and Zn$Cl_2$ to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility,” Environ. Sci. Technol., 41, 8484-8490 (2007) https://doi.org/10.1021/es071445r
  10. Lee, W. M., An, Y. J., Yoon, H., and Kweon, H. K., “Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (TritiZnm Aestivum): plant agar test for water-insoluble nanoparticles,” Environ. Toxicol. Chem., 27(9), 1915-1921(2008) https://doi.org/10.1897/07-481.1
  11. Fleischer, A., O'eill, M. A., and Ehwald, R., “The pore size of nongraminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II,” Plant Physiol, 121, 829-838(1999) https://doi.org/10.1104/pp.121.3.829