DOI QR코드

DOI QR Code

Molecular Phylogeny and Modular Structure of Hybrid NRPS/PKS Gene Fragment of Pseudoalteromonas sp. NJ6-3-2 Isolated From Marine Sponge Hymeniacidon perleve

  • Zhu, Peng (College of Life Sciences, Zhejiang University) ;
  • Zheng, Yanling (Key Laboratory of Marine Biotechnology, Ningbo University) ;
  • You, Yurong (Key Laboratory of Marine Biotechnology, Ningbo University) ;
  • Yan, Xiaojun (Key Laboratory of Marine Biotechnology, Ningbo University) ;
  • Shao, Jianzhong (College of Life Sciences, Zhejiang University)
  • Received : 2008.04.18
  • Accepted : 2008.07.18
  • Published : 2009.03.31

Abstract

Among 12 marine bacterial strains from the China coast that exhibited interesting bioactivity (positive for both antimicrobial and cytotoxic activities), only four strains, namely, NJ6-3-1, NJ6-3-2, NB-6, and YTHM-17, had a KS domain or A domain when screened for PKS and NRPS genes using a PCR. Interestingly, two of these strains belonging to Pseudoalteromonas and associated with the marine sponge Hymeniacidon perleve were positive for both PKS and NRPS, whereas the other two strains of Pseudoalteromonas did not have a PKS or NRPS gene. A molecular phylogeny analysis and DGGE analysis of the Pseudoalteromonas sp. indicated that they had a specific affinity with the host marine sponge Hymeniacidon perleve. Furthermore, an analysis of a partial sequence of Pseudoalteromonas sp. NJ6-3-2 isolated from the marine sponge Hymeniacidon perleve obtained from genomic walking using a computational approach indicated a relatively complete PKS module including auxiliary domains (DH, KR, and Cy).

Keywords

References

  1. Armstrong, E., L. Yan, K. G. Boyd, P. C. Wright, and J. G. Burgess. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37-40 https://doi.org/10.1023/A:1012756913566
  2. Bassam, B. J. and G. Caetano. 1999. Fast and sensitive silver staining of DNA in polyacrylamide gels. Ann. Biochem. 196: 80-83
  3. Davidson, S. K., S. W. Allen, G. E. Lim, C. M. Anderson, and M. G. Haygood. 2001. Evidence for the biosynthesis of bryostatins by the bacterial symbiont 'Candidatus Endobugula sertula' of the Bryozoan Bugula neritina. Appl. Environ. Microbiol. 67:4531-4537 https://doi.org/10.1128/AEM.67.10.4531-4537.2001
  4. Franks, A., P. Haywood, C. Holmström, S. Egan, S. Kjelleberg, and N. Kumar. 2005. Isolation and structure elucidation of a novel yellow pigment from the marine bacterium Pseudoalteromonas tunicate. Molecules 10: 1286-1291 https://doi.org/10.3390/10101286
  5. Funa, N., Y. Ohnishi, I. Fujii, M. Shibuya, Y. Ebizuka, and S. Horinouchi. 1999. A new pathway for polyketide synthesis in microorganisms. Nature 400: 798-799
  6. Haefner, B. 2003. Drugs from the deep: Marine natural products as drug candidates. Drug Discov. Today 8: 536-544 https://doi.org/10.1016/S1359-6446(03)02713-2
  7. Hildebrand, M., L. E. Waggoner, G. E. Lim, K. H. Sharp, C. P. Ridley, and M. G. Haygood. 2003. Approaches to identify, clone and express symbiont bioactive metabolite biosynthesis genes. Nat. Prod. Rep. 21: 122-142 https://doi.org/10.1039/b302336m
  8. Holmstrom, C. and S. Kjelleberg. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracelluar agents. FEMS Microbiol. Ecol. 30: 285-293
  9. Holmstrom, C., S. Egan, A. Franks, S. McCloy, and S. Kjelleberg. 2002. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol. Ecol. 41: 47-58 https://doi.org/10.1111/j.1574-6968.1987.tb02139.x
  10. Isnansetyo, A. and Y. Kamei. 2003. Pseudoalteromonas phenolica sp. nov., a novel marine bacterium that produces phenolic antimethicillin-resistant Staphylococcus aureus substances. Int. J. Syst. Evol. Microbiol. 53: 583-588 https://doi.org/10.1099/ijs.0.02431-0
  11. Kumar, S., K. Tamura, and I. B. Jakobsen. 2001. MEGA2:Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245 https://doi.org/10.1093/bioinformatics/17.12.1244
  12. Lin, J., X. Yan, L. Zheng, H. H. Ma, and H. M. Chen. 2005. Cytotoxicity and apoptosis induction of some selected marine bacteria metabolites. J. Appl. Microbiol. 99: 1363-1372
  13. Moffitt, M. C. and B. A. Neilan. 2000. The expansion of mechanistic and organismic diversity associated with non-ribosomal peptides. FEMS Microbiol. Lett. 191: 159-167 https://doi.org/10.1111/j.1574-6968.2000.tb09334.x
  14. Mohd, Z. A., Y. Gitanjali, S. G. Rajesh, and M. Debasisa. 2004. NRPS-PKS: A knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32: 405-413 https://doi.org/10.1093/nar/gkh359
  15. Neilan, B. A., E. Dittmann, and L. Rouhiainen. 1999. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181: 4089-4097
  16. Piel, J., D. Hui, G. Wen, D. Butzke, M. Platzer, N. Fusetani, and S. Matsunaga. 2004. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. U.S.A. 101: 16222-16227 https://doi.org/10.1073/pnas.0405976101
  17. Proksch, P., R. A. Edrada, and R. Ebel. 2002. Drugs from the seas - current status and microbiological implications. Appl. Microbiol. Biotechnol. 59: 125-134 https://doi.org/10.1007/s00253-002-1006-8
  18. Schirmer, A., R. Gadkari, C. D. Reeves, F. Ibrahim, E. F. DeLong, and C. R. Hutchinson. 2005. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissolute. Appl. Environ. Microbiol. 71: 4840-4849 https://doi.org/10.1128/AEM.71.8.4840-4849.2005
  19. Schmidt, E. W., J. T. Nelson, D. A. Rasko, S. Sudek, J. A. Eisen, M. G. Haygood, and J. Ravel. 2005. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. U.S.A. 102: 7315-7320 https://doi.org/10.1073/pnas.0501424102
  20. Staunton, J. and K. J. Weissman. 2001. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep. 18: 380-416 https://doi.org/10.1039/a909079g
  21. Taylor, M. W., R. Radax, D. Steger, and M. Wagner. 2007. Spongeassociated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71: 295-347 https://doi.org/10.1128/MMBR.00040-06
  22. Thompson, J. D., T. J. Gibson, and F. Plewniak. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882 https://doi.org/10.1093/nar/25.24.4876
  23. Torben, L. S., R. B. Niels, H. Carola, K. Staffan, and D. Ingela. 2004. Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl. Environ. Microb. 70: 2373-2382 https://doi.org/10.1128/AEM.70.4.2373-2382.2004
  24. Valinsky, L., G. D. Vedova, and A. J. Scupham. 2002. Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl. Environ. Microb. 68: 3243-3250 https://doi.org/10.1128/AEM.68.7.3243-3250.2002
  25. Webster, N. S., K. J. Wilson, L. L. Blackall, and R. T. Hill. 2001. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl. Environ. Microbiol. 67:434-444 https://doi.org/10.1128/AEM.67.1.434-444.2001
  26. Zheng, L., X. Han, H. Chen, W. Lin, and X. Yan. 2005. Marine bacteria associated with marine macroorganisms: The potential antimicrobial resources. Ann. Microbiol. 55: 35-40
  27. Zhu, P., L. Zheng, J. Lin, J. Z. Shao, and X. J. Yan. 2007. Screening and characterization of marine bacteria with antibacterial and cytotoxic activities, and existence of PKS I and NRPS genes in bioactive strains. Acta Microbiolo Sinica 47: 228-234

Cited by

  1. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae) vol.6, pp.None, 2009, https://doi.org/10.3389/fmicb.2015.00389
  2. Antimicrobial properties of cultivable bacteria associated with seaweeds in the Gulf of Mannar on the southeast coast of India vol.62, pp.8, 2009, https://doi.org/10.1139/cjm-2015-0769
  3. Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects vol.14, pp.10, 2016, https://doi.org/10.3390/md14100171
  4. Genome Mining, Microbial Interactions, and Molecular Networking Reveals New Dibromoalterochromides from Strains of Pseudoalteromonas of Coiba National Park-Panama vol.18, pp.9, 2020, https://doi.org/10.3390/md18090456