DOI QR코드

DOI QR Code

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

  • 투고 : 2008.12.08
  • 심사 : 2009.02.03
  • 발행 : 2009.06.25

초록

In this paper, we report the optical and structural properties of a bilayer circular filter fabricated by a glancing angle deposition technique. The bilayer circular filter is realized by a two-layer $TiO_2$ helical film with layers of opposite structural handedness. It is found that the bilayer circular filter reflects both right and left circularly polarized light with wavelength lying in the Bragg regime. The microstructure of the bilayer circular filter is also investigated using a scanning electron microscope.

키워드

참고문헌

  1. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, USA, 2005)
  2. N. O. Young and J. Kowal, 'Optically active fluorite films,' Nature (London) 183, 104-105 (1959) https://doi.org/10.1038/183104a0
  3. I. Hodgkinson and Q. H. Wu, 'Inorganic chiral optical materials,' Adv. Mater. 13, 889-897 (2001) https://doi.org/10.1002/1521-4095(200107)13:12/13<889::AID-ADMA889>3.0.CO;2-K
  4. S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, 'Growth of sculptured polymer submicronwire assemblies by vapor deposition,' Polymer Com. 46, 9544-9548 (2005) https://doi.org/10.1016/j.polymer.2005.07.092
  5. R. Messier, V. C. Venugopal, and P. D. Sunal, 'Origin and evolution of sculptured thin films,' J. Vac. Sci. Technol. A 18, 1538-1545 (2000) https://doi.org/10.1116/1.582381
  6. B. Dick, M. J. Brett, and T. Smy, 'Controlled growth of periodic pillars by glancing angle deposition,' J. Vac. Sci. Technol. B 21, 23-28 (2003) https://doi.org/10.1116/1.1529652
  7. K. Robbie, M. J. Brett, and A. Lakhtakia, 'First thin film realization of a helicoidal bianisotropic medium,' J. Vac. Sci. Technol. A 13, 2991-2993 (1995) https://doi.org/10.1116/1.579626
  8. S.-H. Woo and C. K. Hwangbo, 'Optical anisotropy of microstructure-controlled TiO2 films fabricated by glancing-angle deposition (GLAD),' J. Korean Phys. Soc. 48, 1199-1204 (2006)
  9. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, 'Fabrication of tetragonal square spiral photonic crystal,' Nano Lett. 2, 59-62 (2002) https://doi.org/10.1021/nl015635q
  10. S. R. Kennedy and M. J. Brett, 'Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition,' J. Vac. Sci. Technol. B 22, 1184-1190 (2004) https://doi.org/10.1116/1.1752903
  11. Y. P. Zhao, D. X. Ye, P. I. Wang, G. C. Wang, and T. M. Lu, 'Fabrication of Si nanocolumns and Si square spirals on self-assembled monolayer colloid substrates,' Int. J. Nanosci. 1, 87-97 (2002) https://doi.org/10.1142/S0219581X02000073
  12. I. Hodgkinson and Q. H. Wu, 'Birefringent thin-film polarizers for use at normal incidence and with planar technologies,' Appl. Phys. Lett. 74, 1794-1796 (1999) https://doi.org/10.1063/1.123088
  13. A. C. van Popta, M. H. Hawkeye, J. C. Sit, and M. J. Brett, 'Gradient-index narrow-bandpass filter fabricated with glancing-angle deposition,' Opt. Lett. 29, 2545-2547 (2004) https://doi.org/10.1364/OL.29.002545
  14. K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, 'Vacuum evaporated porous silicon photonic interference filters,' Appl. Opt. 42, 4212-4219 (2003) https://doi.org/10.1364/AO.42.004212
  15. S. R. Kennedy and M. J. Brett, 'Porous broadband antireflection coating by glancing angle deposition,' Appl. Opt. 42, 4573-4579 (2003) https://doi.org/10.1364/AO.42.004573
  16. S.-H. Woo, Y. J. Park, D. H. Chang, K. A. Sobahan, and C. K. Hwangbo, 'Wideband antireflection coatings of porous MgF2 films by using glancing angle deposition,' J. Korean Phys. Soc. 51, 1501-1506 (2007) https://doi.org/10.3938/jkps.51.1501
  17. Q. H. Wu, L. D. Silva, M. Arnold, I. J. Hodgkinson, and E. Takeuchi, 'All-silicon polarizing filters for nearinfrared wavelengths,' J. Appl. Phys. 95, 402-404 (2004) https://doi.org/10.1063/1.1627481
  18. J. J. Steel, J. P. Gospodyn, J. C. Sit, and M. J. Brett, 'Impact of morphology on high-speed humidity sensor performance,' IEEE Sensors J. 6, 24-27 (2006) https://doi.org/10.1109/JSEN.2005.859359
  19. J. J. Steel, A. C. van Popta, M. M. Hawkeye, J. C. Sit, and M. J. Brett, 'Nanostructured gradient index optical filter for high-speed humidity sensing,' Sensors and Actuators B 120, 213-219 (2006) https://doi.org/10.1016/j.snb.2006.02.003
  20. A. Lakhtakia and M. W. McCall, 'Simple expressions for Bragg reflection from axially excited chiral sculptured thin films,' J. Mod. Opt. 49, 1525-1535 (2002) https://doi.org/10.1080/09500340110107496
  21. J. Adams, W. Haas, and J. Dailey, 'Cholesteric films as optical filters,' J. Appl. Phys. 42, 4096-4098 (1971) https://doi.org/10.1063/1.1659735
  22. A. Lakhtakia, 'Axial excitation of tightly interlaced chiral sculptured thin films: 'averaged' circular Bragg phenomenon,' Optik 112, 119-124 (2001) https://doi.org/10.1078/0030-4026-00023
  23. J. B. Sorage, A. C. van Popta, J. C. Sit, and M. J. Brett, 'Circular birefringence dependence on chiral film porosity,' Opt. Exp. 14, 10550-10557 (2006) https://doi.org/10.1364/OE.14.010550
  24. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, 'Fabrication of thin films with highly porous microstructures,' J. Vac. Sci. Technol. A 13, 1032-1035 (1995) https://doi.org/10.1116/1.579579
  25. K. Robbie and M. Brett, 'Sculptured thin films and glancing angle deposition: growth mechanics and applications,' J. Vac. Sci. Technol. A 15, 1460-1465 (1997) https://doi.org/10.1116/1.580562
  26. A. C. van Popta, J. C. Sit, and M. J. Brett, 'Optical properties of porous helical thin films,' Appl. Opt. 43, 3632-3639 (2004) https://doi.org/10.1364/AO.43.003632
  27. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, 'Vacuum deposition of chiral sculptured thin films with high optical activity,' Appl. Opt. 39, 642-649 (2000) https://doi.org/10.1364/AO.39.000642
  28. K. Kaminska and K. Robbie, 'Birefringent omnidirectional reflector,' Appl. Opt. 43, 1570-1576 (2004) https://doi.org/10.1364/AO.43.001570
  29. Y. J. Park, K. A. Sobahan, and C. K. Hwangbo, 'Wideband circular polarization reflector fabricated by glancing angle deposition,' Opt. Exp. 16, 5186-5192 (2008) https://doi.org/10.1364/OE.16.005186
  30. Y. J. Park, K. A. Sobahan, and C. K. Hwangbo, 'Optical and structural properties of helical TiO2 films deposited by glancing angle deposition technique,' J. Korean Phys. Soc. 52, S8-S12 (2008) https://doi.org/10.3938/jkps.52.8

피인용 문헌

  1. Design and Development of an Ultralow Optical Loss Mirror Coating for Zerodur Substrate vol.16, pp.1, 2012, https://doi.org/10.3807/JOSK.2012.16.1.080
  2. Effect of angle of deposition on micro-roughness parameters and optical properties of HfO2 thin films deposited by reactive electron beam evaporation vol.609, 2016, https://doi.org/10.1016/j.tsf.2016.04.034
  3. Disassembling Glancing Angle Deposited Films for High-Throughput, Single-Post Growth Scaling Measurements vol.18, pp.05, 2012, https://doi.org/10.1017/S1431927612001080
  4. Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle vol.6, pp.16, 2014, https://doi.org/10.1039/C4NR00249K
  5. Nanostructured optical thin films fabricated by oblique angle deposition vol.1, pp.4, 2011, https://doi.org/10.1088/2043-6262/1/4/045005
  6. Determination of Optical Constants of Thin Films in Extreme Ultraviolet Wavelength Region by an Indirect Optical Method vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.038
  7. Highly photoresponsive and wavelength-selective circularly-polarized-light detector based on metal-oxides hetero-chiral thin film vol.6, pp.1, 2016, https://doi.org/10.1038/srep19580