DOI QR코드

DOI QR Code

Comparative Proteome Analysis of Two Antagonist Bacillus subtilis Strains

  • Zhang, C.X. (The Institute of Botany, Chinese Academy of Sciences) ;
  • Zhao, X. (The Institute of Botany, Chinese Academy of Sciences) ;
  • Han, F. (The Institute of Botany, Chinese Academy of Sciences) ;
  • Yang, M.F. (The Institute of Botany, Chinese Academy of Sciences) ;
  • Chen, H. (The Institute of Botany, Chinese Academy of Sciences) ;
  • Chida, T. (Chemicals Agrochemicals Planning and Development Department) ;
  • Shen, S.H. (The Institute of Botany, Chinese Academy of Sciences)
  • Published : 2009.04.30

Abstract

Natural wild-type strains of Bacillus subtilis are extensively used in agriculture as biocontrol agents for plants. This study examined two antagonist B. subtilis strains, KB-1111 and KB-1122, and the results illustrated that KB-1122 was a more potent inhibitor of the indicator pathogen than KB-1111. Thus, to investigate the intrinsic differences between the two antagonist strains under normal culture conditions, samples of KB-1111 and KB-1122 were analyzed using MALDI-TOF-MS. The main differences were related to 20 abundant intracellular and 17 extracellular proteins. When searching the NCBI database, a number of the differentially expressed proteins were identified, including 11 cellular proteins and 10 secretory proteins. Among these proteins, class III stress-response-related ATPase, aconitate hydratase, alpha-amylase precursor, and a secretory protein, endo-l, 4-beta-glucanase, were differentially expressed by the two strains. These results are useful to comprehend the intrinsic differences between the antagonism of KB-1111 and KB-1122.

Keywords

References

  1. Abbasi, F. M. and S. Komatsu. 2004. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4: 2072-2081 https://doi.org/10.1002/pmic.200300741
  2. Almeida, F. B. R., F. M. Cerqueira, S. R. N. Nascimento, C. J. Ulhoa, and A. L. Lima. 2007. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: Evaluation of coiling and hydrolytic enzyme production. Biotechnol. Lett. 29: 1189-1193 https://doi.org/10.1007/s10529-007-9372-z
  3. Bais, H. P., R. Fall, and J. M.Vianco. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134: 307-319 https://doi.org/10.1104/pp.103.028712
  4. Bradbury, A. J., M. J. Gruer, K. E. Rudd, and J. R. Guest. 1996. The second aconitase (AcnB) of Escherichia coli. Microbiology 142: 389-400 https://doi.org/10.1099/13500872-142-2-389
  5. Cenci, G.., F. Trotta, and G. Caldini. 2006. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J. Appl. Microbiol. 101: 1208-1215 https://doi.org/10.1111/j.1365-2672.2006.03042.x
  6. Chitarra, G. S., P. Breeuwer, M. J. R. Nout, A. C. Aelst, F. M. Rombouts, and T. Abee. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-166 https://doi.org/10.1046/j.1365-2672.2003.01819.x
  7. Dean, R. A., N. J. Talbot, D. J. Ebbole, M. L. Farman, T. K. Mitchell, M. J. Orbach, et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980-986 https://doi.org/10.1038/nature03449
  8. Eymann, C., A. Dreisbach, D. Albrecht, J. Bernhardt, D. Becher, S. Gentner, et al. 2004. A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4: 2849-2876 https://doi.org/10.1002/pmic.200400907
  9. Fan, Q., S. P. Tian, Y. X. Li, Y. Wang, Y. Xu, and J. D. Li. 2000. Postharvest biological control of green mold and blue mold of citrus fruits by Bacillus subtilis. Acta Phytopathol Sin 30: 343- 348
  10. Fan, Q., S. P. Tian, Y. X. Li, Y. Xu, and Y. Wang. 2000. Biological control of postharvest brown rot in peach and nectarine fruits by Bacillus subtilis (B-912). Acta Bot. Sin. 42: 1137- 1143
  11. Hecker, M. and U. V$\ddot{o}$lker. 2004. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 4: 3727-3750 https://doi.org/10.1002/pmic.200401017
  12. Huang, X. W., B. Tian, Q. Niu, Q. N. Yang, L. Zhang, and K. Zhang. 2005. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 156: 719-727 https://doi.org/10.1016/j.resmic.2005.02.006
  13. Kim, K. H., Y. O. Kim, B. S. Ko, H. J. Youn, and D. S. Lee. 2004. Over- xpression of the gene (bglBC1) from Bacillus circulans encoding an endo- TEX>$\beta$-(1-3),(1-4)-glucanase useful for the preparation fligosaccharides from barley $\beta$-glucan. Biot. Lett. 26: 1749- 1755 https://doi.org/10.1007/s10529-004-4581-1
  14. Krüger, E., E. Witt, S. Ohlmeier, R. Hanschke, and M. Hecker. 2000. The Clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Appl. Bacteriol. 182: 3259- 3265 https://doi.org/10.1128/JB.182.11.3259-3265.2000
  15. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. et al. 1997. The complete genome sequence of the Grampositive bacterium Bacillus subtilis. Nature 390: 249-256 https://doi.org/10.1038/36786
  16. Lam, Y. W., H. X. Wang, and T. B. Ng. 2000. A robust cysteinedeficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem. Biophys. Res. Co. Commun. 279: 74-80 https://doi.org/10.1006/bbrc.2000.3821
  17. Leloup, L., J. L. Saux, M. F. Petit-Glatron, and R. Chambert. 1999. Kinetics of the secretion of Bacillus subtilis levanase overproduced during the exponential phase of growth. Microbiology 145: 613-619 https://doi.org/10.1099/13500872-145-3-613
  18. Levy, I., Z. Shani, and O. Shoseyocv. 2002. Modification of polysaccharides and plant cell wall by endo-1,4-$\beta$-glucanase and cellulose-binding domains. Biomol. Engin. 19: 17-30 https://doi.org/10.1016/S1389-0344(02)00007-2
  19. Liu, Y. F., Z. Y. Chen, T. B. Ng, J. Zhang, M. G. Zhou, F. P. Song, and Y. Z. Liu. 2006. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28: 553-559 https://doi.org/10.1016/j.peptides.2006.10.009
  20. Mäder, U., H. Antelmann, T. Buder, M. K. Dahl, M. Hecker, and G. Homuth. 2002. Bacillus subtilis functional genomics: Genomewide analysis of the DegS-DegU regulon by transcriptomics and proteomics. Mol. Genet. Genomics. 268: 455-467 https://doi.org/10.1007/s00438-002-0774-2
  21. Marten, P., K. Smalla, and G. Berg. 2000. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. J. Appl. Microbiol. 89: 463-471 https://doi.org/10.1046/j.1365-2672.2000.01136.x
  22. Moreno, A. B., Á. M. Pozo, and B. S. Segundo. 2006. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl. Microbiol. Biotechnol. 72: 883-895 https://doi.org/10.1007/s00253-006-0362-1
  23. Nouwens, A. S., M. D. P. Willcox, B. J. Walsh, and S. J. Cordwell. 2002. Proteomic comparison of membrane and extracellular proteins from invasive (PAO1) and cytotoxic (6206) strains of Pseudomonas aeruginosa. Proteomics 2: 1325-1346 https://doi.org/10.1002/1615-9861(200209)2:9<1325::AID-PROT1325>3.0.CO;2-4
  24. Ryu, C. M., M. A. Farag, C. H. Hu, M. S. Reddy, J. W. Kloepper, and P. W. Pare. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026 https://doi.org/10.1104/pp.103.026583
  25. Shen, S. H., Y. X. Jing, and T. Y. Kuang. 2003. Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 3: 527-535 https://doi.org/10.1002/pmic.200390066
  26. Souto, G. L., M. S. Correa, N. L. Montecchia, N. L. Kerber, N. L. Pucheu, M. Bachur, and A. F. Garcia. 2004. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. J. Appl. Microbiol. 97: 1247-1256 https://doi.org/10.1111/j.1365-2672.2004.02408.x
  27. Tam, L. T., H. Antelmann, C. Eymann, D. Albrecht, J. Bernhardt, and M. Hecker. 2006. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics 6: 4565-4585 https://doi.org/10.1002/pmic.200600100
  28. Tang, Y., J. R. Guest, P. J. Artymiuk, R. C. Read and J. Green 2004. Post-transcriptional regulation of bacterial motility by aconitase proteins. Mol. Microbiol. 51: 1817-1826 https://doi.org/10.1111/j.1365-2958.2003.03954.x
  29. Tian, B. Y., J. K. Yang, L. H. Lian, C. Y. Wang, N. Li, and K. Q. Zhang. 2007. Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl. Microbiol. Biotech. 74: 372-380 https://doi.org/10.1007/s00253-006-0690-1
  30. Tjalsma, H., H. Antelmann, J. D. H. Jongbloed, P. G. Braun, E. Darmon, R. Dorenbos, et al. 2004. Proteomics of protein secretion by Bacillus subtilis: Separating the "secrets" of the secretome. Microbiol. Mol. Biol. R 68: 207-233 https://doi.org/10.1128/MMBR.68.2.207-233.2004
  31. Zanen, G., H. Antelmann, R. Meima, J. D. H. Jongbloed, M. Kolkman, M. Hecker, J. M. Dijl, and W. J. Ouax. 2006. Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics 6: 3636-3648 https://doi.org/10.1002/pmic.200500560
  32. Zhang, C. X., X. Zhao, Y. X. Jing, T. Chida, H. Chen, and S. H. Shen. 2008. Phenotypic and biological properties of two antagonist Bacillus subtilis strains. World J. Microbiol. Biotech. 24: 2179- 2181 https://doi.org/10.1007/s11274-008-9723-5

Cited by

  1. Protein Profile of Bacillus subtilis Spore vol.63, pp.2, 2009, https://doi.org/10.1007/s00284-011-9967-4
  2. Identification of up-regulated proteins potentially involved in the antagonism mechanism of Bacillus amyloliquefaciens G1 vol.103, pp.6, 2009, https://doi.org/10.1007/s10482-013-9902-8
  3. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131 vol.30, pp.6, 2014, https://doi.org/10.1007/s11274-014-1596-1
  4. Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens vol.60, pp.6, 2009, https://doi.org/10.1007/s10526-015-9686-z
  5. &lt;i&gt;Bacillus subtilis Strains&lt;/i&gt; with Antifungal Activity against the Phytopathogenic Fungi vol.8, pp.1, 2009, https://doi.org/10.4236/as.2017.81001
  6. Expression induction of Serratia plymuthica UBCF_13 metalloprotease gene with various types of metal ions vol.741, pp.1, 2009, https://doi.org/10.1088/1755-1315/741/1/012039
  7. Induction of gene expression and chitinolytic activities of putative chitinase gene bacteria Serratia plymuthica UBCF_13 vol.741, pp.1, 2021, https://doi.org/10.1088/1755-1315/741/1/012045