Effect of Chitosan-Ascorbate and Morea(roasted of oyster shell at $1300^{\circ}C$) on Growth of Contaminating Bacteria in Dombaeki(traditional shark dish) during Storage

돔배기의 저장 중 오염미생물의 생육에 미치는 키토산-아스코베이트 및 모려의 처리효과

  • Kim, Do-Kyun (Department of Food Industrial Technology, Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Ye-Kyung (Department of Food Industrial Technology, Food Science and Technology, Catholic University of Daegu) ;
  • Kim, Young-Sook (Department of Food and Nutrition, Daegu University) ;
  • Park, Jin-Soo (Department of Food Science and Nutrition, Dong-A University) ;
  • Kim, Soon-Dong (Department of Food Industrial Technology, Food Science and Technology, Catholic University of Daegu)
  • 김도균 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 이예경 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 김영숙 (대구대학교 식품영양학과) ;
  • 박진수 (동아대학교 식품영양학과) ;
  • 김순동 (대구가톨릭대학교 외식식품산업학부 식품가공학)
  • Published : 2009.04.30

Abstract

The effects of 0.01%(w/v) chitosan-ascorbate(CA) and 10 ppm morea on the number of total microbes, Escherichia coli levels, and growth of food poisoning bacteria in dombaeki during storage at $10^{\circ}C$ over 6 days were investigated. Total microbes in meat, cartilage, and skin of untreated samples increased by 4.24, 3.81, and 2.20 logs compared to the zero timepoint, respectively, but, in CA-treated samples, counts fell by 2.66, 2.37, and 1.24 logs. Total microbial levels in morea-treated meat, cartilage, and skin showed similar tendencies but the effects were slightly less than seen in CA-treated samples. E. coli numbers in CA-treated meat, cartilage, and skin stored for 6 days decreased by 1.69, 1.25, and 1.52 logs respectively, compared with control samples. Morea-treated samples showed similar falls, but the effects were again slightly less than seen after CA-treatment. Both Salmonella and Vibrio parahaemolyticus were detected in untreated meat stored for 3 or 6 days. Food poisoning bacteria were found in both untreated and morea-treated samples stored over 6 days. However, no such bacteria were detected in CA-treated samples. Also, CA-treated meat, cartilage, and skin showed low degrees of degeneration. Thus, CA treatment enhanced shelf-life and dombaeki quality by inhibiting microorganism growth and tissue breakdown during storage.

돔배기 육, 연골 및 껍질의 저장 중 총균, 대장균 및 병원성미생물의 생육에 미치는 chitosan-ascorbate(CA)(0.01%) 및 모려(10 ppm)의 처리효과를 조사하였다. $10^{\circ}C$에서 6일간 저장한 결과 대조구의 경우 총균수는 육, 연골 및 껍질에서는 각각 4.24, 3.81, 2.20 log cycle이 증가하였으나 CA처리구는 육에서는 2.66 log cycle이, 연골에서는 2.37 log cycle이, 껍질에서는 1.24 log cycle이 감소되었다. 모려처리구에서는 CA처리구 보다 그 효과가 낮으나 육에서는 1.33 log cycle이, 연골에서는 0.93 log cycle이, 껍질에서는 0.59 log cycle이 각각 감소되었다. 6일간 저장한 돔배기의 대장균수는 대조군의 경우 육, 연골 및 껍질에서 각각 3.18, 2.59, 2.25 log CFU/g이었으며 CA처리구에서는 육에서는 1.69 log cycle이, 연골에서는 1.25 log cycle이, 껍질에서는 1.52 log cycle이 각각 감소하였으며, 모려처리구에서는 육에서는 0.65 log cycle, 연골에서는 0.52 log cycle, 껍질에서는 0.76 log cycle이 각각 감소되었다. 무처리구에서는 3일째 육에서 Salmonella가 검출되었고, 6일째는 육, 껍질, 연골 모두에서 Salmonella와 V. parahaemolyticus가 검출되었으며, 모려를 처리한구에서는 6일째 육에서 Salmonella와 V. parahaemolyticus가, 연골에서 Salmonella가 검출되었다. 그러나 CA처리구에서는 육, 연골 및 껍질 모두에서 저장 6일까지 음성반응을 나타내었다. CA와 모려를 처리한 육은 대조구에 비하여 비교적 투명하며 조직의 붕괴도가 낮았다. 또 연골은 대조구에 비하여 조직이 매끈하고 깨끗한 상태를 유지하였으며 껍질은 이물질이 제거되는 scavenger 현상을 나타내었으며 이러한 현상들은 모려보다 CA처리구에서 뚜렷하였다. 이상의 결과 CA와 모려처리는 돔배기에 존재하는 일반미생물과 병원성미생물의 생육을 저해함으로서 신선도와 위생성이 향상시키며 저장 중에 일어나는 조직의 붕괴를 막아 저장성을 향상시키는 효과를 나타낸 것으로 판단된다.

Keywords

References

  1. Yeongcheonsi (2001) Brand 'Yeongcheon Dombaeki' Project. Yeongcheonsi Project Report, p. 10-11
  2. Pastoriza, L. and Sampedro, G. (1994) Influence of ice storage on ray(Raja clavata) wing muscle. J. Sci. Food Agric., 64, 9-18 https://doi.org/10.1002/jsfa.2740640103
  3. Yoshimura, K., Terashima, M., Hozan, D., Ebato, T., Nomura. Y., Ishii, Y and Shirai, K. (2000) Physical properties of shark gelatin compared with pig gelatin. J. Agric. Food Chem., 48, 2023-2027 https://doi.org/10.1021/jf990887m
  4. Huang, F. and Wu, W. (2005) Antidiabetic effect of a new peptide from Squalus mitsukurii liver (S-8300) in streptozocin-induced diabetic mice. J. Pharm. Pharm., 57, 1575-1580 https://doi.org/10.1211/jpp.57.12.0007
  5. Szostak, W.B. and Szostak-Wegierda, D. (2006) Health properties of shark oil. Przegl Lek., 63, 223-226
  6. Yuan, L., Yoshida, M. and Davis, P.F. (2006) Inhibition of pro-angiogenic factors by a lipid-rich shark extract. J. Med. Food, 9, 300-306 https://doi.org/10.1089/jmf.2006.9.300
  7. Deepa, S.S., Yamada, S., Fukui, S. and Sugahara, K. (2007) Structural determination of novel sulfated octasaccharides isolated from chondroitin sulfate of shark cartilage and their application for characterizing monoclonal antibody epitopes. Glycobiol. 17, 631-645 https://doi.org/10.1093/glycob/cwm021
  8. Pugliese, P.T., Jordan, K., Cederberg, H. and Brohult, J. (1998) Some biological action of alkylglycerols form shark liver oil. J. Altren. Complement. Med., 4, 87-99 https://doi.org/10.1089/acm.1998.4.1-87
  9. Cho, S.M., Kwak, K.S., Park, D.C., Gu, Y.S., Ji, C.I., Jang, D.H., Lee, Y.B. and Kim, S.B. (2004) Processing optimization and functional properties of gelatin from shark(Isurus oxyrinchus) cartilage. J. Food Hyd., 8, 573-579
  10. Ghaouth, A.E., Arul, J., Ponnampalam, R. and Boulet, M. (2006) Chitosan coating effect on storability and quality of fresh strawberries. J. Food Sci., 53, 1618-1620 https://doi.org/10.1111/j.1365-2621.1988.tb07799.x
  11. Lee, S.H., No. H.K., and Joung, Y.H. (1996) Effect of chitosan coating on quality of egg durin storage. J. Korean Soc. Food Nutr., 25, 288-293
  12. Muzzarelli, R.A.A., Tanfani, F. and Emanuelli, M. (1984) Chelating derivatives of chitosan obtained by reaction with ascorbic acid. Carb. Pol., 4, 137-151 https://doi.org/10.1016/0144-8617(84)90020-1
  13. Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M. and Kobayashi, E. (1994) Mechanism for the inhibition of fat digestion by chitosan and for the synergistic effect of ascorbate. Biosci. Biotech. Biochem., 59, 786-790
  14. Tsujikawa, T., Kanauchi, O., Andoh, A., Saotome, T., Sasaki, M., Fujiyama, Y. and Bamba, T. (2003) Supplement of a chitosan and ascorbic acid mixture for Crohn's disease A pilot study. Nutr., 19, 137-139 https://doi.org/10.1016/S0899-9007(02)00958-9
  15. Zoldners, J., Kiseleva, T. and Kaiminsh, I. (2005) Influence of ascorbic acid on the stability of chitosan solutions. Carb. Pol., 60, 215-218 https://doi.org/10.1016/j.carbpol.2005.01.013
  16. Yook, C.S., Kim, S.M., Jeong, J.M., Jeong, M.S., Kim, J.H. and Kim, S.B. (1995) Medicinal Component Clinical Application of Herb Medicine. Keichookmoonhasa, Seoul, Korea, p. 803
  17. Kim, B.G., Moon, J.I. and Ha, S.A. (2001) Study of potential risks of soil amendment using water treatment sludge and oyster shell. Korean J. Soc. Soil. Sci. Fert., 18, 532-539
  18. Kim, J.G., Lee, H.S., Cho, J.G. and Lee, Y.H. (1995) Composition of crushed oyster shell and it's application effect on vegetables. Korean J. Soc. Soil. Sci. Fert., 28, 350-355
  19. Downes, F.P. and Ito, K. (2001) Compendium of Methods for the Microbiological Examination of Food. American Public Health Association, Washington D.C., U.S.A., p.63-67
  20. Korea Food Code (2003) Korea Food & Drug Administration. Seoul, Korea, p. 396-398
  21. Sagoo, S., Board, R. and Roller, S. (2002) Chitosan inhibits growth of spoilage micro-organisms in chilled pork products. Food Microbiol., 19, 175-182 https://doi.org/10.1006/fmic.2001.0474
  22. Park, L.Y. and Lee, S.H. (2007) Effect of immersion in chitosan solution on shelf life of tofu. J. Chitin Chitosan, 12, 128-132
  23. Omura, Y., Shigemoto, M., Akiyama, T., Saimoto, H., Shigemasa, Y., Nakamura, I. and T, Tsuchido. (2003) Antimicrobial activity of chitosan with different degrees of acetylation and molecular weights. Biocontrol Sci., 8, 25-30 https://doi.org/10.4265/bio.8.25
  24. Shin, A.G., Jung, Y.K., Lee, Y.K., Kang, M.S., NO, H.K. and Kim, S.D. (2006) Effects of the molecular weight and type of chitosan on shelf life of makkulli. J. Marine Biosci. Biotechnol. 1, 282-291
  25. Jeon, Y.J., Lee, E.H. and Kim, S.K. (1996) Bioactivities of chitin and chitosan(І) J. Chitin Chitosan, 1, 4-13
  26. Uchida, T. (1988) キチン · キトサンの抗菌性. 月刊フ-ド ケミカル 2, p.22-29
  27. Yong, D.H., Kohle, H. and Kauss, H. (1982) Effect of chitosan on membrane permeability of suspension cultured Glycine max and Phaseolus vulgaris cells. American Soc. Plant Biol., 70, 1449-1454
  28. Stossel, P. and Leuba, J.L. (1984) Effect of chitosan, chitin and some aminosugars on growth of various soilborne phytopathogenic fungi. J. Phytopathol., 111, 82-90 https://doi.org/10.1111/j.1439-0434.1984.tb04244.x
  29. Jo, G., Jin, Y.L., Chin, K.B. and Park, R.D. (2002) Effect of chitosan on the growth of food poisoning bacteria. J. Chitin Chitosan, 7, 219-224
  30. Shin, H.S. and Yoo, E.K. (2004) The observation of coating formation of damaged hair according to the chitosan treatment. J. Kor. Soc. Cosm., 10, 1-6