DOI QR코드

DOI QR Code

Modified Test Statistic for Identity of Two Distribution on Credit Evaluation

신용평가에서 두 분포의 동일성 검정에 대한 수정통계량

  • Hong, C.S. (Department of Statistics, Sungkyunkwan University) ;
  • Park, H.S. (Research Institute of Applied Statistics, Sungkyunkwan University)
  • 홍종선 (성균관대학교 통계학) ;
  • 박하수 (성균관대학교 응용통계연구소)
  • Published : 2009.04.30

Abstract

The probability of default on the credit evaluation study is represented as a linear combination of two distributions of default and non-default, and the distribution of the probability of default are generally known in most cases. Except the well-known Kolmogorov-Smirnov statistic for testing the identity of two distribution, Kuiper, Cramer-Von Mises, Anderson-Darling, and Watson test statistics are introduced in this work. Under the assumption that the population distribution is known, modified Cramer-Von Mises, Anderson-Darling, and Watson statistics are proposed. Based on score data generated from various probability density functions of the probability of default, the modified test statistics are discussed and compared.

신용평가 연구에서 부도와 정상의 분포함수들의 동일성을 검정하는 비모수적 방법으로 Kolmogorov-Smirnov 검정법 이외에 Clamor-Yon Mises, Anderson-Darling, Watson 검정방법을 소개한다. 부도와 정상의 분포함수들의 선형결합된 부도율의 분포함수에 관한 전체적인 정보는 파악되어 잘 알고 있다. 모집단의 분포함수를 알고 있다는 가정 하에 Clamor-Von Mises, Anderson-Darling, Watson 검정통계량의 수정통계량을 제안한다. 신용평가자료와 유사한 성격을 갖는 다양한 부도율의 확률분포로부터 스코어를 생성하여 본 연구에서 제안한 수정통계량을 비교 토론한다.

Keywords

References

  1. 송문섭, 박창순, 이정진(2003). , 자유아카데미
  2. 홍종선, 방글 (2008). 신용평가를 위한 Kolmogorov-Smirnov 수정통계량, <응용통계연구>, 21, 1065-1075 https://doi.org/10.5351/KJAS.2008.21.6.1065
  3. Anderson, T. W. (1962). On the distribution of the two-sample Cramer-von mises criterion, The Annals of Mathematical Statistics, 33, 1148-1159 https://doi.org/10.1214/aoms/1177704477
  4. Azzalini, A. (1985). A class of distributions which includes the normal ones, Scandinavian Journal of Statistics, 12, 171-178
  5. Barton, D. E. and Mallows, C. L. (1965). Some aspects of the random sequence, The Annals of Mathmatical Statistics, 36, 236-260 https://doi.org/10.1214/aoms/1177700286
  6. Buccianti, A. (2005). Meaning of the $\lambda$ parameter of skew-normal and log-skew normal distributions in fluid geochemistry, CODAWORK, 19-21
  7. Burr, E. J. (1964). Small-sample distributions of the two-sample Cramer-von Mises' W $^{2}$ and Watson's U$^{2}$, The Annals of Mathematical Statistics, 35, 1091-1098 https://doi.org/10.1214/aoms/1177703267
  8. Chang, F. C.. Gupta, A. K. and Huang, W. J. (2005). Some Skew-Symmetric Models, Random Operatots and Stochastic Equations, 10, 133-140 https://doi.org/10.1515/rose.2002.10.2.133
  9. Daniel, W. W. (1990). Applied Nonparametric Statistics, 2nd ed., PWS-Kent, Boston
  10. Darling, D. A. (1957). The Kolmogorov-Smirnov, Cramer-von Mises Tests, The Annals of Mathmatical Statistics, 28, 823-838 https://doi.org/10.1214/aoms/1177706788
  11. Fisz, M. (1960). On a Result by M. Rosenblatt Concerning the Von Mises-mirnov Test, The Annals of Mathematical Statistics, 31, 427-429 https://doi.org/10.1214/aoms/1177705905
  12. Genton, M. G. (2005). Discussion of 'The skew-normal distribution and related multivariate families' by A. Azzalini, Scandinavian Journal of Statistics, 32, 189-198 https://doi.org/10.1111/j.1467-9469.2005.00427.x
  13. Gupta, A. K. and Chen, T. (2001). Goodness-of-fit test for the Skew-normal distribution, Communications in Statistics-Simulation and Computation, 30, 907-930 https://doi.org/10.1081/SAC-100107788
  14. Hajek, J., Sidak, Z. and Sen, P. K. (1998). Theory of Rank Tests, 2nd ed., Academic Press, New York
  15. Henze, N. A. (1986). A probabilistic representation of the 'Skewed-normal' distribution, Scandinavian Journal of Statistics, 13, 271-275
  16. Joseph, M. P. (2005). A PD validation framework for Basel 11 internal rating-Based systems, Credit Scoring and Credit Control, IX
  17. Pearson, E. S. (1963). Comparison of tests for randomness of points on a line, Biometrika, 50, 315-325 https://doi.org/10.1093/biomet/50.3-4.315
  18. Pettitt, A. N. (1976). A two-sample Anderson-Darling rank statistic, Biometrika, 63, 161-168
  19. Scholz, F. W. and Stephens, M. A. (1987). K-sample Anderson-Darling tests, Journal of the American Statistical Association, 82, 918-924 https://doi.org/10.2307/2288805
  20. Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent sample, Bulletin Moscow University, 2, 3-16
  21. Stephens, M. A. (1965). Significance points for the two-sample statistic U$^{2}$$_{M,N}$, Biometrika, 52, 661-663
  22. Stephens, M. A. (1970). Use of the Kolmogorov-Smirnov, Cramer-von Mises and related statistics without extensive tables, Journal of the Royal Statistical Society. Series B(Methodological), 32, 115-122
  23. Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons, Journal of the American Statistical Association, 69, 730-737 https://doi.org/10.2307/2286009
  24. Stephens, M. A. (1976). Asymptotic results for goodness-of-fit statistics with unknown parameters, The Annals of Statistics, 4, 357-369 https://doi.org/10.1214/aos/1176343411
  25. Stephens, M. A. (1978). On the W test for exponentiality with origin known, Technometrics, 20, 33-35 https://doi.org/10.2307/1268158
  26. Tasche, D. (2006). Validation of internal rating system and PD estimates, Working paper, http://arxiv.org/physics/0606071v 1
  27. Watson, G. S. (1961). Goodness-of-fit tests on a circle, Biometrika, 48, 109-114 https://doi.org/10.1093/biomet/48.1-2.109
  28. Watson, G. S. (1962). Goodness-of-fit tests on a circle 11, Biometrika, 49, 57-63 https://doi.org/10.1093/biomet/49.1-2.57