Electronic Structure of Superconducting NaFeAs

초전도 NaFeAs의 전자 구조

  • Lee, K.W. (Department of Display and Semiconductor Physics, Korea University)
  • Published : 2009.04.30

Abstract

NaFeAs recently observed superconductivity with the maximum $T_c{\approx}25$ K is investigated using first principles approach. We will address briefly the electronic structure and contrast other superconducting pnictides. This system shows strong two-dimensionality and reduction of flatness in the Fermi surfaces undermines tendencies of magnetic or charge instabilities. As observed in other superconducting pnictides, $Q_M=(\pi,\pi,0)$ antiferromagnetic ordering, which has not been observed clearly yet in this compound, is energetically favored. However, contrast to other superconducting pnictides, the density of states in this ordering shows considerable electron-hole asymmetry, implying efficiency of hole-doping than electron-doping to enhance $T_c$.

Keywords

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 139, 3296 (2008).
  2. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature 453, 376 (2008). https://doi.org/10.1038/nature06972
  3. C. Wang, L. Li, S. Chi, Z. Zhu, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, Europhys. Lett. 83, 67006 (2008). https://doi.org/10.1209/0295-5075/83/67006
  4. C. Wang, L. Li, S. Chi, Z. Zhu, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, and Z. Xu, Europhys. Lett. 83, 67006 (2008). https://doi.org/10.1209/0295-5075/83/67006
  5. M. S. Torikachvili, S. L. Bud’ko, N. Ni, and P. C. Canfield, Phys. Rev. Lett. 101, 057006 (2008). https://doi.org/10.1103/PhysRevLett.101.057006
  6. T. Park, E. Park, H. Lee, T. Klimczuk, E. D. Bauer, F. Ronning, and J. D. Thompson, J. Phys.: Condens. Matter 20, 322204 (2008). https://doi.org/10.1088/0953-8984/20/32/322204
  7. G. Wu, R. H. Liu, H. Chen, Y. J. Yan, T. Wu, Y. L. Xie, J. J. Ying, X. F. Wang, D. F. Fang, and X. H. Chen, Europhys. Lett. 84, 27010 (2008). https://doi.org/10.1209/0295-5075/84/27010
  8. A. S. Sefat, R. Jin, M. A. McGuire, B. C. Sales, D. J. Singh, and D. Mandrus, phys. Rev. Lett. 101, 117004 (2008). https://doi.org/10.1103/PhysRevLett.101.117004
  9. J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. W. Chu, and A. M. Guloy, Phys. Rev. B 78, 060505(R) (2008). https://doi.org/10.1103/PhysRevB.78.060505
  10. D. R. Parker, M. J. Pitcher, and S. J. Clarke, arXiv:0810.3214 (unpublished).
  11. C. W. Chu, F. Chen, M. Gooch, A. M. Guloy, B. Lorenz, B. Lv, K. Sasmal, Z. J. Tang, J. H. Tapp, and Y. Y. Xue, arXiv:0902.0806 (unpublished).
  12. H. Kotegawa, S. Masaki, Y. Awai, H. Tou, Y. Mizuguchi, and Y. Takano, J. Phys. Soc. Jpn. 77, 113703 (2008). https://doi.org/10.1143/JPSJ.77.113703
  13. K.-W. Yeh, T.-W. Huang, Y.-L. Huang, T.-K. Chen, F.-C. Hsu, P. M. Wu, Y.-C. Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, Europhys. Lett. 83, 37002 (2008). https://doi.org/10.1209/0295-5075/83/37002
  14. T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, arXiv:0902.3832 (unpublished).
  15. H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M. M. Korshunov, I. Eremin, S.-L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Buchner, Phys. Rev. Lett. 101, 077005 (2008). https://doi.org/10.1103/PhysRevLett.101.077005
  16. Y. Qui, W. Bao, Q. Huang, T. Yildirim, J. M. Simmons, M. A. Green, J. W. Lynn, Y. C. Gasparovic, J. Li, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett. 101, 257002 (2008). https://doi.org/10.1103/PhysRevLett.101.257002
  17. K. Kitagawa, N. Katayama, K. Ohgushi, M. Yoshida, and M. Takigawa, J. Phys. Soc. Jpn. 77, 114709 (2008). https://doi.org/10.1143/JPSJ.77.114709
  18. I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008). https://doi.org/10.1103/PhysRevLett.101.057003
  19. J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang, and N. L. Wang, Europhys. Lett. 83, 27006 (2008). https://doi.org/10.1209/0295-5075/83/27006
  20. Z. P. Yin, S. Lebegue, M. J. Han, B. P. Neal, S. Y. Savrasov, and W. E. Pickett, Phys. Rev. Lett. 101, 047001 (2008). https://doi.org/10.1103/PhysRevLett.101.047001
  21. T. Yildirim, Phys. Rev. Lett. 101, 057010 (2008). https://doi.org/10.1103/PhysRevLett.101.057010
  22. K.-W. Lee, V. Pardo, and W. E. Pickett, Phys. Rev. B 78, 174502 (2008). https://doi.org/10.1103/PhysRevB.78.174502
  23. X. C. Wang, Q. Q. Liu, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, arXiv:0806.4688v2 (unpublished).
  24. M. J. Pitcher, D. R. Parker, P. Adamson, S. J. Herkerlrath, A. T. Boothroyd, and S. J. Clarke, Chem. Commun. 5918-5920 (2008).
  25. F. L. Pratt, P. J. Baker, S. J. Blundell, F. Lancaster, H. J. Lewtas, P. Adamson, M. J. Pitcher, and S. J. Clarke, arXiv:0810.0973 (unpublished).
  26. G. F. Chen, W. Z. Hu, J. L. Luo, and N. L. Wang, arXiv:0902.1100 (unpublished).
  27. R. A. Jishi and H. M. Alyahyaei, arXiv:0812.1215 (unpublished).
  28. K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999). https://doi.org/10.1103/PhysRevB.59.1743
  29. D. J. Singh, Phys. Rev. B 78, 094511 (2008). https://doi.org/10.1103/PhysRevB.78.094511
  30. H. Q. Yuan, J. Singleton, F. F. Balakirev, S. A. Baily, G. F. Chen, J. L. Luo, and N. L. Wang, Nature 457, 565 (2009). https://doi.org/10.1038/nature07676
  31. F. Ronning, T. Klimczuk, E. D. Bauer, H. Volz, and J. D. Thompson, J. Phys.:Condens. Matter 20, 322201 (2008). https://doi.org/10.1088/0953-8984/20/32/322201