DOI QR코드

DOI QR Code

Bulnesia Sarmienti Aqueous Extract Inhibits Inflammation in LPS-Stimulated RAW 264.7 Cells

RAW 264.7세포에서 lipopolysaccharide로 유발시킨 염증반응에 대한 Bulnesia sarmienti 열수추출물의 억제효과

  • 전용필 (성신여자대학교 자연과학대학) ;
  • ;
  • 박창호 ((재)대구테크노파크 바이오산업지원센터) ;
  • 홍주헌 ((재)대구테크노파크 바이오산업지원센터) ;
  • 이기동 ((재)대구테크노파크 바이오산업지원센터) ;
  • 송재찬 (경북대학교 수의과대학) ;
  • 김길수 (경북대학교 수의과대학)
  • Published : 2009.04.30

Abstract

Bulnesia sarmienti (BS), a traditional South American herbal medicine native to Gran Chaco, has been used to treat various human ailments. We investigated the cytotoxic activities and the inhibitory effects of BS bark extract(0, 50, 100 and $200\;{\mu}g/\;mL$) on the production of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), cyclooxygenase (COX) and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) in the lipopolysaccharide (LPS) (100 ng/ml)-stimulated murine macrophage cell line RAW264.7. The levels of NO, COX, PGE2 production and proinflammatory cytokines ($IL-1{\beta}$, IL-6 and $TNF-{\alpha}$) were measured by ELISA kit. Cell viability, as measured by the MTT assay, showed that BS extract had no significant cytotoxicity in RAW264.7 cells. BS extract significantly inhibited the LPS-induced NO, $PGE_2$ and COX production accompanied by an attenuation of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ formation in macrophages. These results suggest that BS extract has potential as an herbal medicine for the treatment of inflammatory diseases.

본 연구는 BS 열수추출물의 항염증 활성을 조사하기 위하여 LPS로 자극된 RAW 264.7세포에서 세포가 방출하는 NO, $PGE_2$, COX생성량과 염증성 사이토카인인 $IL-1{\beta}$, IL-6, $TNF-{\alpha}$의 생성량의 변화를 조사하여 항염증성 기능의 유무와 정도를 알아보고자 하였다. 마우스 대식세포인 RAW 264.7에 대한 BS추출물의 농도별(0, 50, 100, $200\;{\mu}g/ml$) 세포독성을 알아보기 위하여 MTT assay를 수행하여 $200\;{\mu}g/ml$ 이하의 농도에서는 세포독성이 낮아 기본적으로 세포의 생존율에 영향을 주지 않는다는 사실을 알 수 있었다. RAW 264.7세포에 BS추출물을 전처리하고 LPS를 18시간 동안 처리한 후 NO의 생성량은 정상세포에 비하여 약 8배 이상 증가되었으며, BS추출물을 $100\;{\mu}g/ml$ 농도 이상으로 처리한 실험군에서는 농도의존적으로 nitrite의 생성량이 유의하게 감소되었다. $PGE_2$의 생성량은 LPS처리에 의하여 정상세포에 비하여 약 14배 이상 증가되었으며 BS추출물을 100 및 $200\;{\mu}g/ml$의 농도로 처리한 실험군에서는 농도의존적으로 유의하게 각각 55.1%, 39.9% 감소되었다. COX의 생성량은 LPS처리에 의하여 정상세포에 비하여 약 5.6배 증가되었으며 $100\;{\mu}g/ml$ 이상의 농도처리군에서는 농도의존적으로 유의하게 감소되었다. LPS처리후 $IL-1{\beta}$, IL-6, $NF-{\alpha}$의 생성량은 정상세포에 비하여 급격하게 증가되었으며, 여러 농도(50, 100, $200\;{\mu}g/ml$)의 BS추출물로 처리한 실험군에서는 각각 아무런 처치를 하지 않은 세포에 비하여 농도의존적인 각각의 생성량이 감소되었다. 특히 $100\;{\mu}g/ml$ 농도 이상의 BS처리군에서는 모두 통계학적 유의성이 인정되었다. 이러한 결과는 BS에서 염증억제 효과가 있음을 in vitro 연구에서 확인할 수 있었고, 향후 유효성분 추출을 통한 항염증 물질의 연구 또는 예방하거나 치료할 수 있는 염증 억제 성분의 분리 및 그 작용기전 연구에 중요한 기초 자료가 될 것이라 사료된다.

Keywords

References

  1. Axtelle, T. and J. Pribble. 2001. IC14, a CD14 specific monoclonal antibody is a potential treatment for patients with severe sepsis. J. Endotoxin Res. 7, 310-314 https://doi.org/10.1179/096805101101532783
  2. Azad, N., Y. Rojanasakul, and V. Vallyathan. 2008. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J. Toxicol. Environ. Health B. Crit. Rev. 11, 11-15 https://doi.org/10.1080/10937400701436460
  3. Chung, I. M., K. H. Kim, and J. K. Ahn. 1998. Screening of Korean medicinal and food plants with antioxidant activity. Kor. J. Med. Sci. 6, 311-322
  4. Jo, D. H., K. J. Min, and C. G. Cha. 2007. The antioxidant and antitumor effects of the extract of Bulnesia sarmienti. J. Food Hyg. Safety 2, 120-126
  5. McCord, J. M. 1974. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185, 529-531 https://doi.org/10.1126/science.185.4150.529
  6. McCord, J. M., K. Wong, S. H. Stokes, W. F. Petrone, and D. English. 1980. Superoxide and inflammation: a mechanism for the anti-inflammatory activity of superoxide dismutase. Acta Physiol. Scand. Suppl. 492, 25-30
  7. Funk, C. D., L. B. Frunk, M. E. Kennedy, A. S. Pong, and G. A. Fitzgerald. 1991. Human platelet/erythroleukemia cell prostaglandin G/H synthase: cDNA cloning, expression, and gene chromosomal assignment. FASEB J. 5, 2304-2312
  8. Halliwell, B. and J. M. Gutteridga. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219, 1-14
  9. Hyun, E. A., H. J. Lee, W. J. Yoon, S. Y. Park, H. K. Kang, S. J. Kim, and E. S. Yoo. 2004. Inhibitory effect of Salvia officinalis on the inflammatory cytokines and inducible nitric oxide synthesis in murine macrophage RAW 264.7. Yakhak Hoeji. 48, 159-164
  10. Kim, J. Y., K. S. Jung, and H. G. Jeong. 2004. Suppressive effects of the kahweol and cafestol on cycloocygenase-2 expression in macrophages. FEBS Letters 569, 321-326 https://doi.org/10.1016/j.febslet.2004.05.070
  11. Lazarov, S., M. Balutsov, and E. Ianev. 2000. The role of bacterial endotoxins, receptors and cytokines in the pathogenesis of septic (endotoxin) shock. Vutr. Boles. 32, 33-40
  12. Lee, T. H., H. B. Kwak, H. H. Kim, Z. H. Lee, D. K. Chung, N. I. Baek, and J. Kim. 2007. Methanol extracts of Stewartia koreana inhibit cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression by blocking NF-kappa B transactivation in LPS-activated RAW 264.7 cells. Mol. Cells 23, 398-404
  13. Lee, E. S., H. K. Ju, T. C. Moon, E. Lee, Y. Jahng, S. H. Lee, J. K. Son, S. H. Baek, and H. W. Chang. 2004. Inhibition of nitric oxide and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) production by propenone compound through blockade of nuclear factor (NF)-$_kB$ activation in cultured murine macrophages. Biol. Pharm. Bull. 27, 617-620 https://doi.org/10.1248/bpb.27.617
  14. Liang, Y. C., Y. T. Huang, S. H. Tsai, S. Y. Lin-Shiau, C. F. Chen, and J. K. Lin. 1999. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 20, 1945-1952 https://doi.org/10.1093/carcin/20.10.1945
  15. Lin, Y. L. and J. K. Lin. 1997. (-)-Epigallocatechin- 3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol. 52, 465-472
  16. Masferrer, J., B. S. Zweifel, P. T. Manning, S. D. Hauser, K. M. Leahy, W. G. Smith, P. C. Isakson, and K. Seibert. 1994. Selective inhibition of inducible cyclooxygenase 2 in ivo is antiinflammatory and nonulcerogenic. Proc. Natl. Acad. Sci. 91, 3228-3232 https://doi.org/10.1073/pnas.91.8.3228
  17. Mukaida, N., Y. Ishikawa, N. Ikeda, N. Fujioka, S. Watanabe, and K. Kuno. 1996. Novel insight into molecular mechanism of endotoxin shock; biochemical analysis of LPS receptor signaling in a cell-free system targeting NF-kB and regulation of cytokine production/action through beta2 integrin in vivo. J. Leukoc. Biol. 59, 145-151
  18. Mu, M. M., D. Chakravortty, T. Sugiyama, N. Koide, K. Takahashi, I. Mori, T. Yoshida, and T. Yokochi. 2001. The inhibitory action of quercetin on lipopolysaccharide- induced nitric oxide production in RAW 264.7 macrophage cells. J. Endotoxin Res. 7, 431-438 https://doi.org/10.1128/IAI.69.3.1315-1321.2001
  19. Nishida, T., Y. Yabe, H. Y. Fu, Y. Hayashi, K. Asahi, H. Eguchi, S. Tsuji, M. Tsujii, N. Hayashi, and S. Kawano. 2007. Geranylgeranylacetone induces cyclooxygenase-2 expression in cultured rat gastric epithelial cells through NF-kB. Dig. Dis. Sci. 52, 1890-1896 https://doi.org/10.1007/s10620-006-9661-8
  20. Park, C. H., J. H. Hong, J. O. Kim, K. S. Kim, and G. D. Lee. 2008. Single oral-dose toxicity of Bulnesia sarmienti single and mixed extracts in Sprague-Dawley rats. Laboratory Animal Research 24, 83-86
  21. Park, C. H., J. O. Kim, G. D. Lee, K. S. Kim, and J. H. Hong. 2008. Effect of Bulnesia sarmienti water extract on lipid metabolism in type-1 diabetic rats. Journal of Life Science 18, 852-857 https://doi.org/10.5352/JLS.2008.18.6.852
  22. Park, C. H., G. D. Lee, J. O. Kim, K. S. Kim, W. Y. Lee, and J. H. Hong. 2008. Effect of Bulnesia sarmienti water extract on lipid metabolism in neonatally streptozotocin-induced diabetic rats. Journal of Life Science 18, 999-1004 https://doi.org/10.5352/JLS.2008.18.7.999
  23. Park, C. H., D. I. Kim, H. K. Jung, G. D. Lee, K. S. Kim, and J. H. Hong. 2008. Effect of Bulnesia sarmienti single and complex extracts on serum lipid and body fat in rats fed high-fat diet. Korean Journal of Food Science Technology 40, 449-454
  24. Park, C. H., D. I. Kim, E. J. Shin, G. D. Lee, J. O. Kim, K. S. Kim, and J. H. Hong. 2008. Effect of Bulnesia sarmienti ethanol extract on plasma levels of glucose and lipid in streptozotocin induced diabetic rats. Korean Journal of Food Science Technology 40, 455-459
  25. Ryu, J. H., H. Ahn, J. Y. Kim, and Y. K. Kim. 2003. Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother. Res. 17, 485-489 https://doi.org/10.1002/ptr.1180
  26. Santos-Gomes, P. C., R. M. Seabra, P. B. Andrade, and M. Fernandes-Ferreira. 2003. Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J. Plant Physiol. 160, 1025-1032 https://doi.org/10.1078/0176-1617-00831
  27. Scott, M. G. and R. E. Hancock. 2000. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20, 407-431
  28. Seibert, K., Y. Zhang, K. Leahy, S. Hauser, J. Masferrer, W. Perkins, L. Lee, and P. Isakson. 1994. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA 91, 12013-12017 https://doi.org/10.1073/pnas.91.25.12013
  29. Tesuka, Y., S. Irikawa, T. Kaneko, A. H. Banskota, T. Nagaoka, Q. Xiong, K. Hase, and S. Kadota. 2001. Screening of chinese herbal drug extracts for inhibitory activity on nitric oxide production and identification of an active compound of Zanthoxylum bugeanum. J. Ethnopharmacol. 77, 209-217 https://doi.org/10.1016/S0378-8741(01)00300-2
  30. Tsai, S. H., S. Y. Lin-Shiau, and J. K. Lin. 1999. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br. J. Pharmacol. 126, 673-680 https://doi.org/10.1038/sj.bjp.0702357
  31. Vane, J. A. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like durgs. Nat. New Biol. 23, 232-235
  32. Weis, Z. A., L. Cicatiello, and H. Esumi. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215
  33. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a better therapy. Ann. Rheum. Dis. 34, 471-478 https://doi.org/10.1136/ard.34.6.471

Cited by

  1. Anti-inflammatory Activity of Extracts from Ultra-Fine Ground Saururus chinensis Leaves in Lipopolysaccharide-Stimulated Raw 264.7 Cells vol.59, pp.1, 2016, https://doi.org/10.3839/jabc.2016.008
  2. Anti-Inflammatory Effect of Chloroform Extract from Potentilla chinensis vol.28, pp.1, 2013, https://doi.org/10.7841/ksbbj.2013.28.1.13
  3. Inhibitory effects of extracts from Smilacina japonica on lipopolysaccharide induced nitric oxide and prostaglandin E2production in RAW264.7 macrophages vol.41, pp.4, 2014, https://doi.org/10.5010/JPB.2014.41.4.201
  4. Anti-Inflammatory Effects of Picrasma Quassioides (D.DON) BENN Leaves Extracts vol.23, pp.5, 2013, https://doi.org/10.5352/JLS.2013.23.5.629
  5. Inhibitory Effects of Extracts from Arabis glabra on Lipopolysaccharide Induced Nitric Oxide and Prostaglandin E2 Production in RAW264.7 Macrophages vol.28, pp.5, 2015, https://doi.org/10.7732/kjpr.2015.28.5.568
  6. In vitro anti-inflammatory activity of extracts from Potentilla supina in murine macrophage RAW 264.7 cells vol.44, pp.1, 2017, https://doi.org/10.5010/JPB.2017.44.1.076
  7. Effect of Inflammatory Responses to PLGA Films Incorporated Hesperidin: In vitro and In vivo Results vol.37, pp.3, 2013, https://doi.org/10.7317/pk.2013.37.3.323
  8. Protective effects of red ginseng according to steaming time on HCl/ethanol-induced acute gastritis vol.59, pp.4, 2016, https://doi.org/10.3839/jabc.2016.062
  9. Anti-Inflammatory Effects of Haliotidis Concha vol.26, pp.4, 2013, https://doi.org/10.6114/jkood.2013.26.4.070
  10. Anti-aging Effect of Inula britannica var. chinensis Flower Extract According to the Extraction Temperature vol.40, pp.1, 2014, https://doi.org/10.15230/SCSK.2014.40.1.109
  11. Effect of Cheongungdajosan-gamibang on oxidative damage and inflammation vol.29, pp.4, 2014, https://doi.org/10.6116/kjh.2014.29.4.53
  12. Anti-Inflammatory Effects of Extracts from Ligustrum ovalifolium H. Leaves on RAW264.7 Macrophages vol.41, pp.9, 2012, https://doi.org/10.3746/jkfn.2012.41.9.1205
  13. Anti-Inflammatory Effects of Volatile Flavor Extracts from Cnidium officinale and Angelica gigas vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1057
  14. Biological Activity of Dandelion (Taraxacum officinale) extracts Fermented with Raw Sugar vol.44, pp.5, 2012, https://doi.org/10.9721/KJFST.2012.44.5.607
  15. Anti-inflammatory activity of manassantin A from ultra-fine ground Saururus chinensis in lipopolysaccharide-stimulated RAW 264.7 cells vol.60, pp.1, 2017, https://doi.org/10.1007/s13765-016-0249-5
  16. leaves extract on proinflammatory responses in lipopolysaccharide-induced Raw 264.7 cells vol.60, pp.3, 2017, https://doi.org/10.3839/jabc.2017.031
  17. Antioxidant and anti-inflammatory activities of Opuntia ficus-indica and Opuntia humifusa fruits ethanol extracts vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.586