광독립영양 기내 미세증식 시스템에서 생육단계별 환경조절을 통한 감자의 기내 및 기외 생육과 에너지 효율 향상

Improvement of Growth of Potato (Solanum tuberosum L. cv. Dejima) Plants at In Vitro and Ex Vitro and Energy Efficiency by Environmental Control with Growth Stage in Photoautotrophic Micropropagation System

  • 오명민 (캔자스주립대 원예학과) ;
  • 이훈 (서울대학교 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 식물생산과학부 및 농업생명과학연구원)
  • Oh, Myung-Min (Department of Horticultural Science, Kansas State University) ;
  • Lee, Hoon (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung-Eek (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 발행 : 2009.03.31

초록

이전 실험에서 결정된 생육 단계별 최적 환경조건을 평가하기 위한 4가지 처리는 다음과 같았다: 생육 단계별 최적 환경 조건을 사용한 광독립 영양배양(photoautotrophic optimum condition with growth stage (POG)), 생육 단계별 평균 광합성 광량자속 밀도(photosynthetic photon flux density(PPFD))와 $CO_2$ 농도를 사용한 광독립 영양배양(photoautotrophic constant condition with average PPFD and $CO_2$ of POG(PCA)), 생육 단계별 최대 PPFD와 $CO_2$농도를 사용한 광독립 영양배양(photoautotrophic constant condition with maximum PPFD and $CO_2$ of POG(PCM)) 그리고 대조군으로 3%의 당을 포함한 광혼합 영양배양(photomixotrophic conventional condition with 3% sucrose(PMC)). 실험 결과 각 생육 단계별 환경제어(POG)는 기내에서 배양된 감자 소식물체의 모든 생육 관련 항목에서 유의적 증진을 유도하였다. 또한 단위 건물중 당 소비된 전력과 $CO_2$는 모든 처리 중 POG에서 가장 낮았다. 기외 이식 이후에도 POG에서 생산된 감자 묘는 PMC에서 자란 감자 묘와 전체적으로 큰 차이 없이 왕성한 생육을 유지하였다. 특히 POC는 기존 광혼합 영양방식(PCM)과 비교했을 때 기외 이식전과 이식 후 20일째 각각 4.7배와 3.8배 높은 건물중을 기록하였다. 따라서 POG와 같은 생육 단계별 환경 조절을 통한 광독립 영양 미세 증식 방법은 에너지 절감 효과와 함께 무균의 건강한 감자 묘의 생산에 효과적이었다.

This study was conducted to evaluate the effect of optimized environment conditions with growth stage in photoautotrophic micropropagation on the growth of potato (Solanum tuberosum L. cv. Dejima) plantlets and energy efficiency. Optimum environment conditions at each stage were decided in our previous study. For the evaluation of optimized environment control, potato plantlets were cultured under four different conditions: photoautotrophic optimum conditions of photosynthetic photon flux density (PPFD) and $CO_2$ levels with growth stage (POG), photoautotrophic constant condition with average PPFD and $CO_2$ levels (PCA), photoauototrophic constant condition with maximum PPFD and $CO_2$ levels (PCM), and photomixotrophic conventional condition with 3% sucrose (PMC) as control. As a result, environment control with growth stage (POG) significantly promoted all the growth characteristics such as the number of nodes and unfolded leaves, shoot height, shoot diameter, and fresh and dry weights of potato grown in vitro. In addition, based on dry weight consumed electricity and $CO_2$ were the lowest in POG suggesting the highest energy efficiency among the treatments. After transferring potato plantlets to greenhouse, the plantlets under POG showed vigorous growth, which was pretty similar with those under PMC. The accumulations of dry matter in POG were 4.7 times in vitro and 3.8 times in greenhouse as much as those in the conventional control (PCM). Thus, we concluded that in vitro environment control with growth stage induced vigorous growth of potato plantlets both in vitro and in greenhouse with less energy consumption.

키워드

참고문헌

  1. Aitken-Christie J., T. Kozai, and M.A.L. Smith, 1995. Automation and Environmental Control in Plant Tissue Culture. (500p). Kluwer Academic Publishers, Dordrecht
  2. Amirouche, L., T. Stuchbury, and S. Matthews. 1985. Comparisons of cultivar performance on different nutrient media in a routine method for potato micropropagation. Potato Res. 28:469-477 https://doi.org/10.1007/BF02357525
  3. Jeong, B.R., K. Fujiwara, and T. Kozai. 1995. Environmental control and photoautotrophic micropropagation. p. 123-170. In: Janick, J. (ed.). Horticultural Reviews. Vol 17. AVI Publishing Co. Inc, Westport
  4. Karp, A., M.G.K. Jones, D. Foulger, N. Fish, and S.W.J. Bright. 1989. Variability in potato tissue culture. Amer. J. Potato Res. 66:669-684 https://doi.org/10.1007/BF02853986
  5. Kitaya, Y., Y. Ohmural, C. Kubota, and T. Kozai. 2005. Manipulation of the culture environment on in vitro air movement and its impact on plantlets photosynthesis. Plant Cell Tiss. Org. Cult. 83: 251-257 https://doi.org/10.1007/s11240-005-6839-2
  6. Kozai, T., K. Fujiwara, and I. Watanabe. 1986. Fundamental studies of environments In plant tissue vessels (2). Effects of stoppers and vessels on gas exchange rates between inside and outside of vessels closed with stoppers. J. Agric. Meteorol. 42:119-127 https://doi.org/10.2480/agrmet.42.119
  7. Kozai, T., Y. Koyama, and I. Watanabe. 1988. Multiplication of potato plantlets in vitro with sugar-free medium under high photosynthetic photon flux. Acta Hort. (Wageningen) 230:121-127
  8. Kozai, T. 1991a. Micropropagation under photoautotrophic conditions. P.C. p. 447-469. In: Debergh and R.H. Zimmerman (eds.). Micropropagation: technique and application, Academic Press
  9. Kozai, T., K. Iwabuchi, K. Watanabe, and I. Watanabe. 1991b. Photoautotrophic and photomixotrophic growth of strawberry plantlets in vitro and changes in nutrient composition of the medium. Plant Cell Tiss. Org. Cult. 25: 107-115 https://doi.org/10.1007/BF00042181
  10. Kozai, T., C. Cubota, and B. R. Jeong. 1997a. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tiss. Org. Cult. 51:49-56 https://doi.org/10.1023/A:1005809518371
  11. Kozai, T., N.T. Quynh, and C. Kubota. 1997b. Environmental control and its effects in transplant production under artificial light. J. Kor. Soc. Hort. Sci. 38:194-199
  12. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  13. Niyogi, K.K. 1999. Photoprotection revisited: genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:333-359 https://doi.org/10.1146/annurev.arplant.50.1.333
  14. Oh, M.-M., H. N. Trick, and C. B. Rajashekar. 2009. Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J. Plant Physiol. 166:180-191 https://doi.org/10.1016/j.jplph.2008.04.015
  15. Pospisilova, J., I. Ticha, P. Kadlecek, D. Haisel, and S. Plzakova. 1999. Acclimatization of micropropagated plant to ex vitro conditions. Biol. Planta 42:481-497 https://doi.org/10.1023/A:1002688208758
  16. Pruski, K, T. Astatkie, M. Mirza, and J. Nowak. 2002. Photoautotrophic miropropagation of Russet Burbank potato. Plant Cell Tiss. Org. Cult. 69:197-200 https://doi.org/10.1023/A:1015293725983
  17. Seabrook, J.E.A. 2005. Light Effects on the Growth and Morphogenesis of Potato (Solanum tuberosum) In Vitro: A Review. Amer. J. Potato Res. 82:353-367 https://doi.org/10.1007/BF02871966
  18. Smirnoff, N. 1998. Plant resistance to environmental stress. Curr. Opin. Biotechnol. 9:214-219 https://doi.org/10.1016/S0958-1669(98)80118-3
  19. Son, J.E., H. Lee, and M.-M. Oh. 2009. Growth of potato plantlet (Solanum tuberosum L. cv. Dejima) in photoautotrophic micropropagation system at different light intensities and CO2 concentrations and decision of optimum environment conditions with growth stage by modelling. J. Bio-environ. Control 18 (in press)
  20. Weidemann, H.L. 1988. Importance and control of potato virus yN (pvyy) in seed potato production. Potato Res. 31:85-94 https://doi.org/10.1007/BF02360024
  21. Xiao, Y. and T. Kozai. 2004. Commercial application of a photoautotrophic micropropagation system using large vessels with forced ventilation: plant growth and production cost. HortScience 39:1387-1391
  22. Zobayed, S.M.A., F. Afreen-Zobayed, C. Kubota, and T. Kozai. 1999. Stomatal characteristics and leaf anatomy of potato plantlets cultured in vitro under photoautotrophic and photomixotrophic conditions. In Vitro Cell. Dev. Biol. Plant 35:183-188 https://doi.org/10.1007/s11627-999-0075-0