• Title/Summary/Keyword: photoauototrophic

Search Result 1, Processing Time 0.015 seconds

Improvement of Growth of Potato (Solanum tuberosum L. cv. Dejima) Plants at In Vitro and Ex Vitro and Energy Efficiency by Environmental Control with Growth Stage in Photoautotrophic Micropropagation System (광독립영양 기내 미세증식 시스템에서 생육단계별 환경조절을 통한 감자의 기내 및 기외 생육과 에너지 효율 향상)

  • Oh, Myung-Min;Lee, Hoon;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • This study was conducted to evaluate the effect of optimized environment conditions with growth stage in photoautotrophic micropropagation on the growth of potato (Solanum tuberosum L. cv. Dejima) plantlets and energy efficiency. Optimum environment conditions at each stage were decided in our previous study. For the evaluation of optimized environment control, potato plantlets were cultured under four different conditions: photoautotrophic optimum conditions of photosynthetic photon flux density (PPFD) and $CO_2$ levels with growth stage (POG), photoautotrophic constant condition with average PPFD and $CO_2$ levels (PCA), photoauototrophic constant condition with maximum PPFD and $CO_2$ levels (PCM), and photomixotrophic conventional condition with 3% sucrose (PMC) as control. As a result, environment control with growth stage (POG) significantly promoted all the growth characteristics such as the number of nodes and unfolded leaves, shoot height, shoot diameter, and fresh and dry weights of potato grown in vitro. In addition, based on dry weight consumed electricity and $CO_2$ were the lowest in POG suggesting the highest energy efficiency among the treatments. After transferring potato plantlets to greenhouse, the plantlets under POG showed vigorous growth, which was pretty similar with those under PMC. The accumulations of dry matter in POG were 4.7 times in vitro and 3.8 times in greenhouse as much as those in the conventional control (PCM). Thus, we concluded that in vitro environment control with growth stage induced vigorous growth of potato plantlets both in vitro and in greenhouse with less energy consumption.