DOI QR코드

DOI QR Code

NEW COMPLEXITY ANALYSIS OF PRIMAL-DUAL IMPS FOR P* LAPS BASED ON LARGE UPDATES

  • Cho, Gyeong-Mi (DEPARTMENT OF MULTIMEDIA ENGINEERING DONGSEO UNIVERSITY) ;
  • Kim, Min-Kyung (DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY)
  • Published : 2009.05.31

Abstract

In this paper we present new large-update primal-dual interior point algorithms for $P_*$ linear complementarity problems(LAPS) based on a class of kernel functions, ${\psi}(t)={\frac{t^{p+1}-1}{p+1}}+{\frac{1}{\sigma}}(e^{{\sigma}(1-t)}-1)$, p $\in$ [0, 1], ${\sigma}{\geq}1$. It is the first to use this class of kernel functions in the complexity analysis of interior point method(IPM) for $P_*$ LAPS. We showed that if a strictly feasible starting point is available, then new large-update primal-dual interior point algorithms for $P_*$ LAPS have $O((1+2+\kappa)n^{{\frac{1}{p+1}}}lognlog{\frac{n}{\varepsilon}})$ complexity bound. When p = 1, we have $O((1+2\kappa)\sqrt{n}lognlog\frac{n}{\varepsilon})$ complexity which is so far the best known complexity for large-update methods.

Keywords

References

  1. Y. Q. Bai, M. El Ghami, and C. Roos, A new efficient large-update primal-dual interiorpoint method based on a finite barrier, SIAM J. Optim. 13 (2002), no. 3, 766–782 https://doi.org/10.1137/S1052623401398132
  2. Y. Q. Bai, M. El Ghami, and C. Roos, A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization, SIAM J. Optim. 15 (2004), no. 1, 101–128 https://doi.org/10.1137/S1052623403423114
  3. G. M. Cho, M. K. Kim, and Y. H. Lee, Complexity of large-update interior point algorithm for $P_*(\kappa)$ linear complementarity problems, Comput. Math. Appl. 53 (2007), no. 6, 948–960 https://doi.org/10.1016/j.camwa.2006.12.004
  4. M. El Ghami, I. Ivanov, J. B. M. Melissen, C. Roos, and T. Steihaug, A polynomial-time algorithm for linear optimization based on a new class of kernel functions, Journal of Computational and Applied Mathematics, DOI 10.1016/j.cam.2008.05.027
  5. T. Illes and M. Nagy, A Mizuno-Todd-Ye type predictor-corrector algorithm for sufficient linear complementarity problems, European J. Oper. Res. 181 (2007), no. 3, 1097–1111 https://doi.org/10.1016/j.ejor.2005.08.031
  6. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A primal-dual interior point algorithm for linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 29–47, Springer, New York, 1989
  7. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems, Lecture Notes in Computer Science, 538. Springer-Verlag, Berlin, 1991
  8. M. Kojima, S. Mizuno, and A. Yoshise, A polynomial-time algorithm for a class of linear complementarity problems, Math. Programming 44 (1989), no. 1, (Ser. A), 1–26 https://doi.org/10.1007/BF01587074
  9. M. Kojima, S. Mizuno, and A. Yoshise, An O($\sqrt{n}$L) iteration potential reduction algorithm for linear complementarity problems, Math. Programming 50 (1991), no. 3, (Ser. A), 331–342 https://doi.org/10.1007/BF01594942
  10. N. Megiddo, Pathways to the optimal set in linear programming, Progress in mathematical programming (Pacific Grove, CA, 1987), 131–158, Springer, New York, 1989
  11. J. Miao, A quadratically convergent O(($\kappa + 1)\sqrt{n}$L)-iteration algorithm for the $P_*(\kappa)$-matrix linear complementarity problem, Math. Programming 69 (1995), no. 3, Ser. A, 355–368 https://doi.org/10.1007/BF01585565
  12. J. Peng, C. Roos, and T. Terlaky, Self-regular functions and new search directions for linear and semidefinite optimization, Math. Program. 93 (2002), no. 1, Ser. A, 129–171 https://doi.org/10.1007/s101070200296
  13. C. Roos, T. Terlaky, and J. Ph. Vial, Theory and Algorithms for Linear Optimization, An interior point approach. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Ltd., Chichester, 1997
  14. U. Schafer, A linear complementarity problem with a P-matrix, SIAM Rev. 46 (2004), no. 2, 189–201 https://doi.org/10.1137/S0036144502420083