A Mineralogical Study on the Arsenic Behavior in the Tailings of Nakdong Mine

낙동광산의 광미 내 비소 거동에 대한 광물학적 연구

  • Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Young-Ho (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 이우춘 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김영호 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 김순오 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Published : 2009.12.30

Abstract

Arsenic and heavy metals leached out as a result of oxidation of tailings exposed to the surface pose a serious environmental contamination of mine areas. This study investigated how arsenic behavior is controlled by a variety of processes, such as oxidation of sulfides and formation or alteration of secondary minerals, based on mineralogical methods. The study was carried out using the tailing samples obtained from Nakdong mine located in Jeongseongun, Gangwondo. After separating magnetic and non-magnetic minerals using pretreated tailing samples, each mineral sample was classified according to their colors and metallic lusters observed by the stereoscopic microscope. Subsequently, the mineralogical properties were determined using various instrumental analyses, such as x-ray diffractometer (XRD), energy dispersive spectroscopy (EDS), and electron probe micro analyzer (EPMA). The literature review confirmed that various ore minerals were identified in the Nakdong ore deposits. In this study, however, there were observed a few original ore minerals as well as secondary and/or tertiary minerals newly formed as a result of weathering including oxidation. In particular, we did not recognize pyrrhotite which has been known to originally exist in a large abundance, but peculiarly colloform-type iron (oxy)hydroxides were identified, which indicates most of pyrrhotite has been altered by rapid weathering due to its large reactivity. In addition, a secondary scorodites filling the fissure of weathered primary arsenopyrites were identified, and it is speculated that arsenic is immobilized through such a alteration reaction. Also, we observed tertiary iron (oxy)hydroxides were formed as a result of re-alteration of secondary jarosites, and it suggests that the environment of tailing has been changed to high pH from low pH condition which was initiated and developed by oxidation reactions of diverse primary ore minerals. The environmental change is mainly attributed to interactions between secondary minerals and parental rocks around the mine. As a result, not only was the stability of secondary minerals declined, but tertiary minerals were newly formed. As such a process goes through, arsenic which was immobilized is likely to re-dissolve and disperse into surrounding environments.

지표에 노출된 폐광미의 산화작용으로 인해 용출된 비소와 중금속들이 광산주변 환경에 심각한 오염을 야기할 수 있다. 본 연구는 황화광물의 산화작용과 이차 광물의 생성 및 변질과 같은 다양한 작용들이 비소의 거동에 미치는 영향을 광물학적 방법을 이용하여 고찰하였다. 연구대상 광미는 강원도 정선군에 위치한 낙동광산에서 채취하였다. 전처리한 광미로부터 자성광물과 비자성 광물을 선별한 후, 현미경 관찰을 통해 광물의 색 및 금속광택에 따라 분류하였고, X-선 회절 분석기, 에너지 분산분광기, 그리고 전자탐침미세현미경 등과 같은 다양한 기기분석들을 이용하여 광물학적 특성을 조사하였다. 문헌조사에서는 다양한 광석광물이 산출되는 것으로 알려졌지만, 산화 등과 같은 풍화작용으로 인하여 본 연구에서는 일부 광석광물들과 더불어 새롭게 형성된 이차 내지 삼차 광물들을 확인할 수 있었다. 특히 다량으로 존재했다고 알려진 자류철석은 동정되지 않았지만 특징적으로 콜로포옴 형태의 철 (산)수산화광물을 확인하였는데, 이는 자류철석의 큰 반응성으로 인하여 풍화가 급격하게 진행되어 자류철석이 모두 변질된 것을 입증한다. 뿐만 아니라 일차 광석광물인 유비철석의 균열부에 충진한 이차 광물인 스코로다이트를 확인할 수 있었는데 이러한 변질 과정을 통해 용출된 비소가 고정화되는 것으로 판단된다. 또한 이차 광물로 생성된 자로사이트가 다시 변질되어 삼차 광물인 철 (산)수산화광물이 형성되는 것도 관찰할 수 있었는데 이는 다양한 광석광물의 산화작용으로 인해 조성된 초기의 낮은 pH 환경으로부터 pH가 증가하는 환경으로의 전이를 지시한다. 이러한 환경의 변화는 이차 광물들과 주변 모암과의 작용 등에 기인하며 그 결과 이차 광물의 안정도가 떨어지게 되고 새로운 삼차 광물들이 형성된다. 이러한 과정에서 고정화된 비소가 재용출 되어 주변 환경에 확산되어질 수 있다.

Keywords

References

  1. 강민주 (2003) 청양.서보 중석광산 주변 토양의 중금속오염에 관한 광물학적.환경지구화학적 연구 : 자연정화와 환경관리 측면에서의 고찰. 충북대학교 석사학위논문, 178p
  2. 강민주, 이평구 (2005) 폐광산 및 광미에서 비소의 고정메커니즘과 용출특성. 자원환경지질, 38, 495-512
  3. 김순오, 이우춘, 정현수, 조현구 (2009) 침철석(goethite)과 비소의 흡착반응. 한국광물학회지, 22, 177-189
  4. 김현정, 김영규, 추창오 (2009) 삼산제일광산 광미 매립지의 매립 심도에 따른 광물 변화 및 중금속의 거동.한국광물학회지, 22, 229-240
  5. 민정식, 최용석, 조영도, 홍성규, 이영일 (2004) 낙동광산오염(토양, 광해) 방지사업 환경부분 책임감리 연구보고서. 한국지질자원연구원, 318p
  6. 서지원, 윤혜온, 정찬호 (2008) 달천광산 토양 내 중금속의 존재형태 및 오염도. 한국광물학회지, 21, 57-65
  7. 신동복 (2006) 낙동 비소-비스무스 광상의 Pb-Ag-Bi-S계 광물의 산출양상과 화학조성. 자원환경지질, 39, 643-651
  8. 안주성, 김주용, 전철민, 문희수 (2003) 풍화 광미 내 고상 비소의 광물학적⋅화학적 특성 및 용출 가능성 평가. 자원환경지질, 36, 27-38
  9. 이우춘, 정현수, 김주용, 김순오 (2009) 레피도크로사이트(lepidicrocite) 표면의 비소 흡착 특성 규명. 자원환경지질, 42, 95-105
  10. 이평구, 강민주, 박성원, 최상훈 (2003) 청양광산 폐광석더미 내 황화광물의 산화작용과 중금속 저감화. 자원환경지질, 39, 445-459
  11. 이평구, 이인경, 최상훈, 김지수 (2004) 만장광산에서 산출되는 황동석의 산화과정과 중금속 거동 특성. 자원환경지질, 37, 291-301
  12. 정영욱, 이평구, 박성원, 윤 욱, 이재호, 신서천, 지세정, 이진수, 김학주, 김상연, 이변대, 최병인, 홍영국, 민정식, 조원재, 귄광수, 이상권, 강선덕, 강상수, 조영도, 윤치호, 홍성규, 임길재 (2002) 폐금속광산 환경오염 평가 및 정화기술 연구. 한국지질자원연구원, KR-02(연차)-07, 300p
  13. 정현수, 이우춘, 조현구, 김순오 (2008) 자철석의 비소에대한 흡착특성 연구. 한국광물학회, 21, 425-434
  14. 최선규, 박상준, 이평구, 김창성 (2004) 한반도 광상 성인유형에 따른 환경 특성. 자원환경지질, 37, 1-19
  15. Ahn, J.S., Park, Y.S., Kim, J.Y., and Kim, K.W. (2005) Mineralogical and geochemical characterization of arsenic in an abandoned mine tailings of Korea, Environmental Geochemistry and Health, 27, 147-157 https://doi.org/10.1007/s10653-005-0121-8
  16. Bigham, J.M., Schwertmann, U., and Carlson, L. (1992) Mineralogy of precipitates formed by geochemical oxidation of Fe(II) in mine drainage. In: Skinner, H.C.W. and Fitzpatrick, R.W.(eds.), Biomineralization processes of iron and manganese. Cremlingen-Destedt, Catena. Verlag, Germany, 219-232
  17. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L., and Wolf, M. (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta, 60, 2111-2121 https://doi.org/10.1016/0016-7037(96)00091-9
  18. Bluteau, M.C. and Demopoulos, G.P. (2007) The incongruent dissolution of scorodite-solubility, kinetics and mechanism. Hydrometallurgy, 87, 163–177 https://doi.org/10.1016/j.hydromet.2007.03.003
  19. Carlson, L., Bighham, J.M., Schwertmann, U., Kyek, A., and Wagner, F. (2002) Scavenging of As from acid mine drainage by Schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environmental Science and Technology, 36, 1712-1719 https://doi.org/10.1021/es0110271
  20. Courtin-Nomade, A., Bril, H., Neel, C., and Lenain, J.F. (2003) Arsenic in iron cements developed within tailings of a former metalliferous mine-Enguiales, Aveyron, France. Applied Geochemistry, 18, 395-408 https://doi.org/10.1016/S0883-2927(02)00098-7
  21. Craig D.B., Adrian J.B., Alan P.B., Patrick J.w., Kevin B., Takahiko O., Junji A., and David J.P. (2009) Growth controls in colloform pyrite. American Mineralogist, 94, 415-429 https://doi.org/10.2138/am.2009.3053
  22. Dixit, S. and Hering, J.G. (2003) Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37, 4182-4189 https://doi.org/10.1021/es030309t
  23. Dold, B. and Fontbotef, L. (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu-Au deposits from the Punta del Cobre belt, northern Chile. Chemical Geology, 189, 135-163 https://doi.org/10.1016/S0009-2541(02)00044-X
  24. Dove, P.M. and Rimstidt, J.D. (1985) The solubility and stability of scorodite, $FeAsO_4.2H_2O$. American Mineralogist, 70, 838-844
  25. Harvey, M.C., Schreiber, M.E., Rimstidt, J.D., and Griffith, M.M. (2006) Scorodite dissolution kinetics: Implications for arsenic release. Environmental Science and Technology, 40, 6709-6714 https://doi.org/10.1021/es061399f
  26. Jambor, J.L. and Blowes, D.W. (1994) Environmental geochemistry of sulfide Mine wastes. Mineralogical association of Canada. Shot Course, 22, 438p
  27. Juillot, F., Ildefonse, P.H., Morin, G., Calas, G., Kersabie, A.M., and Benedetti, M. (1999) Remobilization of arsenic from buried wastes at an industrial site: Mineralogical and geochemical control. Applied Geochemistry, 14, 1031-1048 https://doi.org/10.1016/S0883-2927(99)00009-8
  28. Jung, M.C., Ahn, J.S., and Chon, H.T. (2001) Environmental contamination and sequential extraction of trace elements from mine wastes around various metalliferous mines in korea. Geosystem Engineering, 4, 50-60 https://doi.org/10.1080/12269328.2001.10541168
  29. Kruse, E. and Ettel, V.A. (1988) Solubility and stability of scorodite, $FeAsO_4.2H_2O$: new data and further discussion. American Mineralogist, 73, 850-854
  30. Lee, K.Y., Kim, K.W., and Kim, S.O. (2009) Geochemical and microbial effects on the mobilization of arsenic in mine tailing soils. Environmental Geochemist by and Health, dio: 10,100n/s10653-009-9263-4 https://doi.org/10.1007/s10653-009-9263-4
  31. Manning B.A. and Goldberg, S. (1997) Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environmental Science and Technology, 31, 2005-2011 https://doi.org/10.1021/es9608104
  32. McGegor, R.G. Blowes, D.W., Jamor, J.L., and Robertson, D.W. (1998) The soild-phase controls on the mobility of heavy metals at Copper Cliff tailings area, Sudbury, Ontario, Canada. Journal of Contaminant Hydrology, 33, 247-271 https://doi.org/10.1016/S0169-7722(98)00060-6
  33. Morin, K.A. and Hutt, N.M. (1997) Environmental geochemistry of mine site drainage practical theory and case studies; Description and assesment of drainage chemistry. MDAG Publishing, 63-138
  34. Morin, G. and Calas, G. (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements, 2, 97-101 https://doi.org/10.2113/gselements.2.2.97
  35. Nesbitt, H.W., Muir, I.J., and Pratt, A.R. (1995) Oxidation of arsenopyrite by air, air-saturated, distilled water, implications for mechanism of oxidation. Geochimica et Cosmochimica Acta, 59, 1773-1786 https://doi.org/10.1016/0016-7037(95)00081-A
  36. Papassiopi, N., Vircikova, E., Nenov, V., Kontopoulos, A., and Molnar, L. (1996) Removal and fixation of arsenic in the form of ferric arsenates; three parallel experimental studies. Hydrometallurgy, 41, 243-253 https://doi.org/10.1016/0304-386X(95)00059-P
  37. Plumlee, G.S. (1998) The environmental geology of mineral deposits. In: Plumlee G.S. and Logsdon, M.J. (eds.), The Environmental Geochemistry of Mineral Deposits Part A: Processes, Techniques, and Health Issues. Reviews in Economic and Environmental Geochemistry, 6A, 71-116
  38. Pokrovski, G.S., Kara, S., and Roux, J. (2002) Stability and Solubility of arsenopyrite, FeAsS, in crustal fluids. Geochimica et Cosmochimica Acta, 66, 2361-2378 https://doi.org/10.1016/S0016-7037(02)00836-0
  39. Sam R. and Isablle K.B. (1999) Magnetic susceptibilities of minerals. U.S. Geological Survey, 99-529
  40. Smedley, P.L. and Kinniburgh, D.G. (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry. 17, 517-568 https://doi.org/10.1016/S0883-2927(02)00018-5
  41. Sun, X. and Doner, H. (1998) Adsorption and oxidation of arsenite on goethite. Soil Science, 163, 278-287 https://doi.org/10.1097/00010694-199804000-00003
  42. Ure, A.M. (1995) Method of analysis for heavy metals in soils. In: Alloway, B.J. (eds.), Heavy metal in soils. Chapman & Hall, Glasgow, 55-68
  43. Wang, S. and Mulligan, C.N. (2006) Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. The Science of the Total Environment, 366, 701-721 https://doi.org/10.1016/j.scitotenv.2005.09.005
  44. Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enzyme and Microbial Technology, 6, 530-537 https://doi.org/10.1016/0141-0229(84)90081-4