DOI QR코드

DOI QR Code

Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing

  • Mirone, Giuseppe (Dipartimento di Ingegneria Industriale e Meccanica, University of Catania)
  • Received : 2007.11.27
  • Accepted : 2009.03.24
  • Published : 2009.11.25

Abstract

Adaptive wings are capable of properly modifying their shape depending on the current aerodynamic conditions, in order to improve the overall performance of a flying vehicle. In this paper is presented the concept design of a small-scale compliant wing rib whose outline may be distorted in order to switch from an aerodynamic profile to another. The distortion loads are induced by shape memory alloy actuators placed within the frame of a wing section whose elastic response is predicted by the matrix method with beam formulation. Genetic optimization is used to find a wing rib structure (corresponding to the first airfoil) able to properly deforms itself when loaded by the SMA-induced forces, becoming as close as possible to the desired target shape (second airfoil). An experimental validation of the design procedure is also carried out with reference to a simplified structure layout.

Keywords

References

  1. Araujo, C.J. and Gonzalez, C.H. (2007), "On two-step strain-temperature behavior in Cu-Zn-Al shape memory alloy wire actuators", Smart Mater. Struct., 16, 884-890. https://doi.org/10.1088/0964-1726/16/3/038
  2. Auricchio, F. and Sacco, E. (1999), "A temperature-dependent beam for shape-memory alloys: costitutive modelling, finite-element implementation and numerical simulations", Comput. Methods Appl. M., 174, 171-190. https://doi.org/10.1016/S0045-7825(98)00285-0
  3. Azadi, B., Rajapakse, R.K.N.D. and Majier, D.M. (2006), "One-dimensional thermomechanical model for dynamic pseudoelastic response of shape memory alloys", Smart Mater. Struct., 15, 996-1008. https://doi.org/10.1088/0964-1726/15/4/013
  4. Bein, T.H., Hanselka, H. and Breitbach, E. (2000), "An adaptive spoiler to control the transonic shock", Smart Mater. Struct., 9, 141-148. https://doi.org/10.1088/0964-1726/9/2/303
  5. Brinson, L.C. (1993), "One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable", J. Intel. Mat. Syst. Str., 4, 229-242. https://doi.org/10.1177/1045389X9300400213
  6. Brinson, L.C. and Huang, M.S. (1996), "Simplifications and Comparisons of shape memory alloy constitutive models", J. Intel. Mat. Syst. Str., 7, 108-114. https://doi.org/10.1177/1045389X9600700112
  7. Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J. Mech. Phys. Solids, 50, 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
  8. Campanile, F., Seack, O. and Sachau, D. (2000), "The belt-rib concept for variable-camber airfoils: recent developments", SPIE Symposium on Smart Structures and Materials.
  9. Campanile, L.F. and Anders, S. (2005), "Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils", Aerosp. Sci. Technol., 9, 55-63. https://doi.org/10.1016/j.ast.2004.07.007
  10. Drela, M. (2001), XFOIL v.6.9 User guide, MIT Aero & Astro Harold Youngren Aerocraft, Inc.
  11. Ezley, D.M., Sofla, Y.N. and Wadley, H.N.G. (2005), "A shape memory based multifunctional structural actuator panel", Int. J. Solids Struct., 42, 1943-1955. https://doi.org/10.1016/j.ijsolstr.2004.05.034
  12. Flemings, G.A. and Burner, A.W. (1999), "Deformation measurements of smart aerodynamic surfaces", 44th SPIE Int. Symposyum on Optical Science, Engineering and Instrumentation.
  13. Gandhi, F. and Anusonti-Inthra, P. (2008), "Skin design studies for variable camber morphing airfoils", Smart Mater. Struct., 17, 15-25.
  14. Garner, L.J., Wilson, L.N., Lagoudas, D.C. and Rediniotis, O.K. (2000), "Development of a shape memory alloy actuated biomimetic vehicle", Smart Mater. Struct., 9, 673-783. https://doi.org/10.1088/0964-1726/9/5/312
  15. Govindjee, S. and Garrett, J.H. (2000), "A computational model for shape memory alloys", Int. J. Solids Struct., 37, 735-760. https://doi.org/10.1016/S0020-7683(99)00048-7
  16. Huang, W. (2002), "On the selection of shape memory alloys for actuators", Mater. Design, 23, 11-19. https://doi.org/10.1016/S0261-3069(01)00039-5
  17. Icardi, U. (2001), "Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments", Compos. Part B, 32, 259-267. https://doi.org/10.1016/S1359-8368(00)00062-7
  18. Kato, H., Inagaki, N. and Sasaki, K. (2004), "A one-dimensionale modelling of constrained shape memory effect", Acta Mater., 52, 3375-3382. https://doi.org/10.1016/j.actamat.2004.03.036
  19. Lu, K.J. and Kota, S. (2002), "Compliant mechanism synthesis for shape-change applications: preliminary results", SPIE Conf. on Smart Structures and Materials, 4693, 161-172.
  20. Lu, Z.K. and Weng, G.J. (1997), "Martensitic transformations and stress-strain relations of shape-memory alloys", J. Mech. Phys. Solids, 45, 1905-1928. https://doi.org/10.1016/S0022-5096(97)00022-7
  21. Lim, S.M., Lee, S.K., Park, H.C., Yoon, K.J. and Goo, N. S. (2005), "Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA)", Smart Mater. Struct., 14, 496-503. https://doi.org/10.1088/0964-1726/14/4/006
  22. Mirone, G. (2007), "Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires", Smart Struct. Syst., 3.
  23. Monner, H.P. (2001), "Realization of an optimized wing camber by using formvariable flap structures", Aerosp. Sci. Technol., 5, 445-455. https://doi.org/10.1016/S1270-9638(01)01118-X
  24. Neal, D.A., Good, M.G., Johnston, C.O., Robertshaw, H.H., Mason, W.H. and Inman, D.J. (2004), "Design and wind-tunnel analysis of a fully adaptive aircraft configuration", AIAA paper, 2004-1727.
  25. Nemat-Nasser, S. and Guo, W.G. (2006), "Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures", Mech. Mater., 38, 463-474. https://doi.org/10.1016/j.mechmat.2005.07.004
  26. Pettit, G.W., Robertshaw, H.H. and Inman, D.J. (2001), "Morphing wings for unmanned aircraft", Smart Materials Bulletin, 11.
  27. Raja, S., Pashilkar, A.A., Sreedeep, R. and Kamesh, J.V. (2006), "Flutter control of a composite plate with piezoelectric multilayered actuators", Aerosp. Sci. Technol., 10, 435-441. https://doi.org/10.1016/j.ast.2006.01.003
  28. Shili, L., Wenjie, G. and Shujun, L. (2008), "Optimal design of compliant trailing edge for shape changing", Chinese J. Aeronautics, 21, 187-192. https://doi.org/10.1016/S1000-9361(08)60024-2
  29. Syaifuddin, M., Park, H.C. and Goo, N.S. (2006), "Design and evaluation of a LIPCA-actuated flapping device", Smart Mater. Struct., 15, 1225-1230. https://doi.org/10.1088/0964-1726/15/5/009
  30. Schmitt, L.M. (2001), "Theory of genetic algorithms", Theor. Comput. Sci., 259, 1-61. https://doi.org/10.1016/S0304-3975(00)00406-0
  31. Song, G. and Ma, N. (2007), "Robust control of a shape memory alloy wire actuated flap", Smart Mater. Struct., 16, N51-N57. https://doi.org/10.1088/0964-1726/16/6/N02
  32. Stanewsky, E. (2000), "Aerodynamic benefits of adaptive wing technology", Aerosp. Sci. Technol., 4, 439-452. https://doi.org/10.1016/S1270-9638(00)01069-5
  33. Strelec, J.K., Lagoudas, D.C., Khan, M.A. and Yen, J. (2003), "Design and implementation of a shape memory alloy actuated reconfigurable airfoil", J. Intel. Mat. Syst. Str., 14, 257-273. https://doi.org/10.1177/1045389X03034687
  34. Strelec, J.K. and Lagoudas, D.C. (2002), "Fabrication and testing of a shape memory alloy actuated reconfigurable wing", 9th SPIE Symposium on Smart Structures and Materials, 4701, 267-280.
  35. Talay, T.A. (1975), Introduction to the aerodynamics of flight, Langley Research Centre, NASA SP367.
  36. Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H. and Lexcellent, C. (1995), "Phenomenological analysis on subloops and cyclic behaviour in shape memory alloys under mechanical and/or thermal loads", Mech. Mater., 19, 281-292. https://doi.org/10.1016/0167-6636(94)00038-I
  37. Tanaka, N. and Sanada, T. (2007), "Modal control of a rectangular plate using smart sensors and smart actuators", Smart Mater. Struct., 16, 36-46. https://doi.org/10.1088/0964-1726/16/1/004
  38. Trochu, F., Sacepe, N., Volkov, O. and Turenne, S. (1999), "Characterization of NiTi shape memory alloys using dual kriging interpolation", Mater. Sci. Eng., A273, 395-399.
  39. Tzou, H.S., Ye, R. and Ding, J.H. (2001), "A new x-actuator design for dual bending/twisting control of wings", J. Sound Vib., 241(2), 271-281. https://doi.org/10.1006/jsvi.2000.3294
  40. Van Blyenburgh, P. (1999), "UAVs: an overview", Air Space Europe, 1, 43-47. https://doi.org/10.1016/S1290-0958(00)88869-3
  41. Vose, M.D. (1999), The simple genetic algorithm: foundations and theory, MIT Press, Cambridge, MA.
  42. Vos, R., Barrett, R., de Breuker, R. and Tiso, P. (2007), "Post-buckled precompressed elements: a new class of control actuators for morphing wing UAVs", Smart Mater. Struct., 16, 919-926. https://doi.org/10.1088/0964-1726/16/3/042
  43. Waisman, H. and Abramovich, H. (2004), "Open-loop flutter analysis of a composite UAV model using the active stiffening effect", Finite Elem. Anal. Des., 40, 1283-1295. https://doi.org/10.1016/j.finel.2003.06.004
  44. Whitley, D. (1994), "A genetic algorithm tutorial", Stat. Comput., 4, 65-85.

Cited by

  1. Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity vol.7, pp.3, 2009, https://doi.org/10.12989/sss.2011.7.3.169