• Title/Summary/Keyword: adaptive wing

Search Result 27, Processing Time 0.018 seconds

Adaptive Control System Designs for Aircraft Wing Rock (항공기 Wing Rock 운동에 대한 적응제어시스템 설계)

  • Shin, Yoong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.725-734
    • /
    • 2011
  • At high angles of attack, aircraft dynamics can display an oscillatory lateral behavior that manifests itself as a limit cycle known as wing rock. In this paper, a classical and neural network based adaptive control design methods of adaptively stabilizing the oscillatory motion by adapting uncertainties are described in detail. All methods are simulated and compared using a model for an 80o swept delta wing.

Design, development and ground testing of hingeless elevons for MAV using piezoelectric composite actuators

  • Dwarakanathan, D.;Ramkumar, R.;Raja, S.;Rao, P. Siva Subba
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.303-328
    • /
    • 2015
  • A design methodology is presented to develop the hingeless control surfaces for MAV using adhesively bonded Macro Fiber Composite (MFC) actuators. These actuators have got the capability to deflect the trailing edge surfaces of the wing to attain the required maneuverability, besides achieving the set aerodynamic trim condition. A scheme involving design, analysis, fabrication and testing procedure has been adopted to realize the trailing edge morphing mechanism. The stiffness distribution of the composite MAV wing is tailored such that the induced deflection by piezoelectric actuation is approximately optimized. Through ground testing, the proposed concept has been demonstrated on a typical MAV structure. Electromechanical analysis is performed to evaluate the actuator performance and subsequently aeroelastic and 2D CFD analyses are carried out to see the functional requirements of wing trailing edge surfaces to behave as elevons. Efforts have been made to obtain the performance comparison of conventional control surfaces (elevons) with morphing wing trailing edge surfaces. A significant improvement in lift to drag ratio is noticed with morphed wing configuration in comparison to conventional wing. Further, it has been shown that the morphed wing trailing edge surfaces can be deployed as elevons for aerodynamic trim applications.

Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.645-662
    • /
    • 2009
  • Adaptive wings are capable of properly modifying their shape depending on the current aerodynamic conditions, in order to improve the overall performance of a flying vehicle. In this paper is presented the concept design of a small-scale compliant wing rib whose outline may be distorted in order to switch from an aerodynamic profile to another. The distortion loads are induced by shape memory alloy actuators placed within the frame of a wing section whose elastic response is predicted by the matrix method with beam formulation. Genetic optimization is used to find a wing rib structure (corresponding to the first airfoil) able to properly deforms itself when loaded by the SMA-induced forces, becoming as close as possible to the desired target shape (second airfoil). An experimental validation of the design procedure is also carried out with reference to a simplified structure layout.

Model-Reference Adaptive Pitch Attitude Control of Fixed-Wing UAV (고정익 무인 항공기 피치 자세의 모델-참조 적응 제어)

  • Kim, Byung-Wook;Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.499-507
    • /
    • 2019
  • Despite the well-known mathematical model of fixed-wing aircraft, there are various studies to meet desired performances by considering the modeling errors in the extended flight envelope. This paper proposes a new adaptation mechanism of model-reference adaptive control, which applies the Levenberg-Marquardt algorithm to the pitch attitude control of fixed-wing UAV. In addition, reference model in the adaptation law is set by referring to the dynamic properties of the plant model. The performance of the proposed adaptive control law is verified through simulations and flight tests.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.89-114
    • /
    • 2007
  • Two aspects of the design of a small-scale smart wing are addressed in this work, related to the ability of the wing to modify its cross section assuming the shape of two different airfoils and to the possibility of deflecting the profiles near the trailing edge in order to obtain hingeless control surfaces. The actuation is provided by one-way shape memory alloy wires eventually coupled to springs, Shape Memory Alloys (SMAs) being among the most promising materials for this kind of applications. The points to be actuated along the profiles and the displacements to be imposed are selecetd so that they satisfactorily approximate the change from an airfoil to the other and to result in an adequate deflection of the control surface; the actuators and their performances are designed so that an adequate wing stiffness is guaranteed, in order to prevent excessive deformations and undesired airfoil shape variations due to aerodynamic loads. The effect of the pressure distributions, calculated by way of the XFOIL software, and of the actuators loads, is estimated by FE analyses of the loaded wing. Two prototypes are then realised incorporating the variable airfoil and the hingeless aileron features respectively, and the verification of their shapes in both the actuated and non-actuated states, supported by image analysis techniques, confirms that interesting results are achievable with the proposed lay out and design considerations.

Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft (신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가)

  • Lee, Ki Young;Kim, Byoung Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Adaptive Neural Network Controller Design for a Blended-Wing UAV with Complex Damage (전익형 무인항공기의 복합손상을 고려한 적응형 신경망 제어기 설계 연구)

  • Kim, Kijoon;Ahn, Jongmin;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • This paper presents a neural network controller design for complex damage to a blended wing Unmanned Aerial Vehicle(UAV): partial loss of main wing and vertical tail. Longitudinal/lateral axis instability and the change of flight dynamics is investigated via numerical simulation. Based on this, neural network based adaptive controller combined with two types of feedback linearization are designed in order to compensate for the complex damage. Performance of two kinds of dynamic inversion controllers is analyzed against complex damage. According to the structure of the dynamic inversion controller, the performance difference is confirmed in normal situation and under damaged situation. Numerical simulation verifies that the instability from the complex damage of the UAV can be stabilized via the proposed adaptive controller.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.