References
- Araujo, C.J. and Gonzalez, C.H. (2007), "On two-step strain-temperature behavior in Cu-Zn-Al shape memory alloy wire actuators", Smart Mater. Struct., 16, 884-890. https://doi.org/10.1088/0964-1726/16/3/038
- Auricchio, F. and Sacco, E. (1999), "A temperature-dependent beam for shape-memory alloys: costitutive modelling, finite-element implementation and numerical simulations", Comput. Methods Appl. M., 174, 171-190. https://doi.org/10.1016/S0045-7825(98)00285-0
- Azadi, B., Rajapakse, R.K.N.D. and Majier, D.M. (2006), "One-dimensional thermomechanical model for dynamic pseudoelastic response of shape memory alloys", Smart Mater. Struct., 15, 996-1008. https://doi.org/10.1088/0964-1726/15/4/013
- Bein, T.H., Hanselka, H. and Breitbach, E. (2000), "An adaptive spoiler to control the transonic shock", Smart Mater. Struct., 9, 141-148. https://doi.org/10.1088/0964-1726/9/2/303
- Brinson, L.C. (1993), "One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable", J. Intel. Mat. Syst. Str., 4, 229-242. https://doi.org/10.1177/1045389X9300400213
- Brinson, L.C. and Huang, M.S. (1996), "Simplifications and Comparisons of shape memory alloy constitutive models", J. Intel. Mat. Syst. Str., 7, 108-114. https://doi.org/10.1177/1045389X9600700112
- Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J. Mech. Phys. Solids, 50, 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
- Campanile, F., Seack, O. and Sachau, D. (2000), "The belt-rib concept for variable-camber airfoils: recent developments", SPIE Symposium on Smart Structures and Materials.
- Campanile, L.F. and Anders, S. (2005), "Aerodynamic and aeroelastic amplification in adaptive belt-rib airfoils", Aerosp. Sci. Technol., 9, 55-63. https://doi.org/10.1016/j.ast.2004.07.007
- Drela, M. (2001), XFOIL v.6.9 User guide, MIT Aero & Astro Harold Youngren Aerocraft, Inc.
- Ezley, D.M., Sofla, Y.N. and Wadley, H.N.G. (2005), "A shape memory based multifunctional structural actuator panel", Int. J. Solids Struct., 42, 1943-1955. https://doi.org/10.1016/j.ijsolstr.2004.05.034
- Flemings, G.A. and Burner, A.W. (1999), "Deformation measurements of smart aerodynamic surfaces", 44th SPIE Int. Symposyum on Optical Science, Engineering and Instrumentation.
- Gandhi, F. and Anusonti-Inthra, P. (2008), "Skin design studies for variable camber morphing airfoils", Smart Mater. Struct., 17, 15-25.
- Garner, L.J., Wilson, L.N., Lagoudas, D.C. and Rediniotis, O.K. (2000), "Development of a shape memory alloy actuated biomimetic vehicle", Smart Mater. Struct., 9, 673-783. https://doi.org/10.1088/0964-1726/9/5/312
- Govindjee, S. and Garrett, J.H. (2000), "A computational model for shape memory alloys", Int. J. Solids Struct., 37, 735-760. https://doi.org/10.1016/S0020-7683(99)00048-7
- Huang, W. (2002), "On the selection of shape memory alloys for actuators", Mater. Design, 23, 11-19. https://doi.org/10.1016/S0261-3069(01)00039-5
- Icardi, U. (2001), "Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments", Compos. Part B, 32, 259-267. https://doi.org/10.1016/S1359-8368(00)00062-7
- Kato, H., Inagaki, N. and Sasaki, K. (2004), "A one-dimensionale modelling of constrained shape memory effect", Acta Mater., 52, 3375-3382. https://doi.org/10.1016/j.actamat.2004.03.036
- Lu, K.J. and Kota, S. (2002), "Compliant mechanism synthesis for shape-change applications: preliminary results", SPIE Conf. on Smart Structures and Materials, 4693, 161-172.
- Lu, Z.K. and Weng, G.J. (1997), "Martensitic transformations and stress-strain relations of shape-memory alloys", J. Mech. Phys. Solids, 45, 1905-1928. https://doi.org/10.1016/S0022-5096(97)00022-7
- Lim, S.M., Lee, S.K., Park, H.C., Yoon, K.J. and Goo, N. S. (2005), "Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA)", Smart Mater. Struct., 14, 496-503. https://doi.org/10.1088/0964-1726/14/4/006
- Mirone, G. (2007), "Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires", Smart Struct. Syst., 3.
- Monner, H.P. (2001), "Realization of an optimized wing camber by using formvariable flap structures", Aerosp. Sci. Technol., 5, 445-455. https://doi.org/10.1016/S1270-9638(01)01118-X
- Neal, D.A., Good, M.G., Johnston, C.O., Robertshaw, H.H., Mason, W.H. and Inman, D.J. (2004), "Design and wind-tunnel analysis of a fully adaptive aircraft configuration", AIAA paper, 2004-1727.
- Nemat-Nasser, S. and Guo, W.G. (2006), "Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures", Mech. Mater., 38, 463-474. https://doi.org/10.1016/j.mechmat.2005.07.004
- Pettit, G.W., Robertshaw, H.H. and Inman, D.J. (2001), "Morphing wings for unmanned aircraft", Smart Materials Bulletin, 11.
- Raja, S., Pashilkar, A.A., Sreedeep, R. and Kamesh, J.V. (2006), "Flutter control of a composite plate with piezoelectric multilayered actuators", Aerosp. Sci. Technol., 10, 435-441. https://doi.org/10.1016/j.ast.2006.01.003
- Shili, L., Wenjie, G. and Shujun, L. (2008), "Optimal design of compliant trailing edge for shape changing", Chinese J. Aeronautics, 21, 187-192. https://doi.org/10.1016/S1000-9361(08)60024-2
- Syaifuddin, M., Park, H.C. and Goo, N.S. (2006), "Design and evaluation of a LIPCA-actuated flapping device", Smart Mater. Struct., 15, 1225-1230. https://doi.org/10.1088/0964-1726/15/5/009
- Schmitt, L.M. (2001), "Theory of genetic algorithms", Theor. Comput. Sci., 259, 1-61. https://doi.org/10.1016/S0304-3975(00)00406-0
- Song, G. and Ma, N. (2007), "Robust control of a shape memory alloy wire actuated flap", Smart Mater. Struct., 16, N51-N57. https://doi.org/10.1088/0964-1726/16/6/N02
- Stanewsky, E. (2000), "Aerodynamic benefits of adaptive wing technology", Aerosp. Sci. Technol., 4, 439-452. https://doi.org/10.1016/S1270-9638(00)01069-5
- Strelec, J.K., Lagoudas, D.C., Khan, M.A. and Yen, J. (2003), "Design and implementation of a shape memory alloy actuated reconfigurable airfoil", J. Intel. Mat. Syst. Str., 14, 257-273. https://doi.org/10.1177/1045389X03034687
- Strelec, J.K. and Lagoudas, D.C. (2002), "Fabrication and testing of a shape memory alloy actuated reconfigurable wing", 9th SPIE Symposium on Smart Structures and Materials, 4701, 267-280.
- Talay, T.A. (1975), Introduction to the aerodynamics of flight, Langley Research Centre, NASA SP367.
- Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H. and Lexcellent, C. (1995), "Phenomenological analysis on subloops and cyclic behaviour in shape memory alloys under mechanical and/or thermal loads", Mech. Mater., 19, 281-292. https://doi.org/10.1016/0167-6636(94)00038-I
- Tanaka, N. and Sanada, T. (2007), "Modal control of a rectangular plate using smart sensors and smart actuators", Smart Mater. Struct., 16, 36-46. https://doi.org/10.1088/0964-1726/16/1/004
- Trochu, F., Sacepe, N., Volkov, O. and Turenne, S. (1999), "Characterization of NiTi shape memory alloys using dual kriging interpolation", Mater. Sci. Eng., A273, 395-399.
- Tzou, H.S., Ye, R. and Ding, J.H. (2001), "A new x-actuator design for dual bending/twisting control of wings", J. Sound Vib., 241(2), 271-281. https://doi.org/10.1006/jsvi.2000.3294
- Van Blyenburgh, P. (1999), "UAVs: an overview", Air Space Europe, 1, 43-47. https://doi.org/10.1016/S1290-0958(00)88869-3
- Vose, M.D. (1999), The simple genetic algorithm: foundations and theory, MIT Press, Cambridge, MA.
- Vos, R., Barrett, R., de Breuker, R. and Tiso, P. (2007), "Post-buckled precompressed elements: a new class of control actuators for morphing wing UAVs", Smart Mater. Struct., 16, 919-926. https://doi.org/10.1088/0964-1726/16/3/042
- Waisman, H. and Abramovich, H. (2004), "Open-loop flutter analysis of a composite UAV model using the active stiffening effect", Finite Elem. Anal. Des., 40, 1283-1295. https://doi.org/10.1016/j.finel.2003.06.004
- Whitley, D. (1994), "A genetic algorithm tutorial", Stat. Comput., 4, 65-85.
Cited by
- Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity vol.7, pp.3, 2009, https://doi.org/10.12989/sss.2011.7.3.169