DOI QR코드

DOI QR Code

Computational multiscale analysis in civil engineering

  • Mang, H.A. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Aigner, E. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Eberhardsteiner, J. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Hackspiel, C. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Hellmich, C. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Hofstetter, K. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Lackner, R. (Material-Technology Unit, Institute for Construction and Materials Science, University of Innsbruck) ;
  • Pichler, B. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Scheiner, S. (Institute for Mechanics of Materials and Structures, Vienna University of Technology) ;
  • Sturzenbecher, R. (Institute for Mechanics of Materials and Structures, Vienna University of Technology)
  • Received : 2008.12.31
  • Accepted : 2009.02.08
  • Published : 2009.06.25

Abstract

Multiscale analysis is a stepwise procedure to obtain macro-scale material laws, directly amenable to structural analysis, based on information from finer scales. An essential ingredient of this mode of analysis is mathematical homogenization of heterogeneous materials at these scales. The purpose of this paper is to demonstrate the potential of multiscale analysis in civil engineering. The materials considered in this work are wood, shotcrete, and asphalt.

Keywords

References

  1. Aigner, E. and Lackner, R. (2008), Micromechanics-based determination of viscous properties of asphalt concrete. J. Mater. Civil Eng. ASCE (accepted for publication).
  2. Aigner, E., Lackner, R. and Pichler, C. H. (2007), "Bottom-up" Multiscale Modeling of Viscoelastic Properties of Asphalt. Proc. of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, (Eds.: A. Loizos, T. Scarpas, I. L. Al-Qadi), Taylor & Francis Group, ISBN: 978-0-41544882-6 123-135.
  3. Dormieux, L., Molinari, A. and Kondo, D. (2002), "Micromechanical approach to the behavior of poroelastic materials", J. Mech. Phys. Solids, 50, 2203-2231. https://doi.org/10.1016/S0022-5096(02)00008-X
  4. Eshelby, J. D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proc. Royal Soc. London, A 241, 376-396. https://doi.org/10.1098/rspa.1957.0133
  5. Fengel, K. and Wegener, G. (2003), Wood. Chemistry, Ultrastructure, Reactions. Verlag Kessel, Remangen.
  6. Feret, R. (1892), "On the compactness of hydraulic mortars [Sur la compacitee des mortiers hydrauliques]", Annales des Ponts et Chaussees, 4(7), 5-161.
  7. Fish, J. (2008), "Multiscale computations: boom or bust", IACM Expressions 22, 4-7.
  8. Fleischmann, M., Krenn, H., Eberhardsteiner, J. and Schickhofer, G. (2007), "Numerische Berechnung von Holzkonstruktionen unter Verwendung eines orthotropen elasto-plastischen Werkstoffmodells", Holz Roh-Werkstoff, 65, 301-313. https://doi.org/10.1007/s00107-007-0185-5
  9. Fritsch, A. and Hellmich, C. (2007), "'Universal' microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: micromechanics-based prediction of anisotropic elasticity", J. Theor. Biol., 224, 597-620.
  10. Gould, S. J. and Lewontin, R. C. (1979), "The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptionist programme", Proc. Royal Soc. London, B 205/1161, 581-598.
  11. Hellmich, C. and Mang, H. (2005), "Shotcrete elasticity revisited in the framework of continuum micromechanics: From submicron to meter level", J. Mater. Civil Eng. ASCE, 17, 246-256. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(246)
  12. Hellmich, C., Ulm, F. J. and Mang, H. A. (1999), "Consistent linearization in finite element analysis of coupled chemo-thermal problems with exo- or endothermal reactions", Comput Mech, 24, 238-244. https://doi.org/10.1007/s004660050512
  13. Hellmich, C., Mang, H. and Ulm, F. J. (2001), "Hybrid method for quantification of stress states in shotcrete tunnel shells: Combination of 3D in situ displacement measurements and thermochemoplastic material law", Comput Struct, 79, 2103-2115. https://doi.org/10.1016/S0045-7949(01)00057-8
  14. Hellmich, C., Ulm, F. J. and Mang, H. A. (1999), "Multisurface chemoplasticity. I: Material model for shotcrete", J. Eng. Mech. (ASCE), 125(6), 692-701. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:6(692)
  15. Hofstetter, K., Hellmich, C. and Eberhardsteiner, J. (2005), "Development and experimental verification of a continuum micromechanics model for the elasticity of wood", Eur. J. Mech. A-Solids 24, 1030-1053. https://doi.org/10.1016/j.euromechsol.2005.05.006
  16. Hofstetter, K., Hellmich, C. and Eberhardsteiner, J. (2007), "Micromechanical modeling of solid-type and platetype deformation patterns within softwood materials. A review and an improved approach", Holzforschung, 61, 343-351.
  17. Lackner, R., Blab, R., Jager, A., Spiegl, M., Kappl, K., Wistuba, M., Gagliano, B. and Eberhardsteiner, J. (2004), Multiscale modeling as the basis for reliable predictions of the behaviour of multi-composed materials. Progress in Engineering Computational Technology, (Eds.: B.H.V. Topping, C.A. Mota Soares), Chapter 8, Saxe-Coburg Publications 153-187.
  18. Laws, N. (1977), "The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material", J. Elasticity, 7(1), 91-97. https://doi.org/10.1007/BF00041133
  19. Lechner, M., Hellmich, C. and Mang, H. A. (2001), Short-term creep of shotcrete-thermochemoplastic material modelling and nonlinear analysis of a laboratory test and of a NATM excavation by the Finite Element method. Lecture Notes in Physics-Continuous and discontinuous modelling of cohesive-frictional materials, P. Vermeer, S. Diebels, W. Ehlers, H. Herrmann, S. Luding, and E. Ramm (eds.), Vol 568, Springer, Berlin, 47-62.
  20. Macht, J., Lackner, R., Hellmich, C. and Mang, H. A. (2001), Shotcrete creep properties-review of material tests and structural analyses of tunnels. Proceedings of the 6th International Conference on Creep, Shrinkage, and Durability Mechanics of Concrete and Other Quasi-Brittle Materials, F.J. Ulm, Z. Ba ant, and F. Wittmann (eds.), Cambridge, Massachusetts, USA, Elsevier Science Ltd., Amsterdam, 285-300.
  21. Mackenzie-Helnwein, P., Mullner, H. W., Eberhardsteiner, J. and Mang, H. A. (2005), "Analysis of lay-ered wooden shells using an orthotropic elasto-plastic model for multiaxial loading of clear spruce wood", Comp. Meth. Appl. Mech. Eng., 194/21-24, 2661-2685. https://doi.org/10.1016/j.cma.2004.07.051
  22. Mura, T. (1987), Micromechanics of Defects in Solids. 2nd edn, Martinus Hijhoff, Dordrecht.
  23. Pichler, B., Hellmich, C. and Eberhardsteiner, J. (2009), "Spherical and acicular representation of hydrates in micromechanical model for cement paste - Prediction of early-age elasticity and strength", Acta Mech., 203(3-4), 137-162. https://doi.org/10.1007/s00707-008-0007-9
  24. Pichler, B., Scheiner, S. and Hellmich, C. (2008), "From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: Micromechanical upscaling of stiffness and strength of shotcrete", Acta Geotechn., 3(4), 273-294. https://doi.org/10.1007/s11440-008-0074-z
  25. Scheiner, S., Pichler, B., Hellmich, C. and Mang, H. A. (2008), Damage and disaster prevention in NATM tunnels during construction: micromechanics-supported hybrid analysis. Proc. of the NATO Advanced Research Workshop on Damage Assessment and Reconstruction after Natural Disasters and Previous Military Activities (Eds. A. Ibrahimbegovic, M. Zlatar) Springer, 145-171.
  26. Sercombe, J., Hellmich, C., Ulm, F. J. and Mang, H. A. (2000), "Modeling of early-age creep of shotcrete. I: Model and model parameters", J. Eng. Mech. ASCE, 126, 284-291. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(284)
  27. Stehfest, H. (1970), "Algorithm 368: Numerical inversion of Laplace transforms", Commun ACM, 13, 47-49. https://doi.org/10.1145/361953.361969
  28. Sturzenbecher, R., Hofstetter, K., Bogensperger, T., Schickhofer, G. and Eberhardsteiner, J. (2008), "A continuum micromechanics approach to elasticity of strand-based engineered wood products: model development and experimental validation. Composites with micro- and nano-structure: Computational modeling and experiments (Ed. V. Kompis), Springer, 161-179.
  29. Ulm, F. J. and Coussy, O. (1996), "Strength growth as chemo-plastic hardening in early-age concrete", J. Eng. Mech. ASCE, 122(12), 1123-1132. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:12(1123)
  30. Zaoui, A. (2002), "Continuum micromechanics: Survey", J. Eng. Mech. ASCE, 128, 808-816. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(808)

Cited by

  1. Fiber reinforced concrete properties - a multiscale approach vol.8, pp.5, 2011, https://doi.org/10.12989/cac.2011.8.5.525
  2. A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures vol.3, pp.3, 2009, https://doi.org/10.12989/imm.2010.3.3.213
  3. Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals vol.4, pp.2, 2009, https://doi.org/10.12989/imm.2011.4.2.139