References
-
B. P. Rai, "
$Cu_2O$ solar cells : A review," Solar Cells,25, 265, 1988 - A.E. Rakshani, "Preparation, characteristics and photovoltaic properties of cuprous oxide- A review," Solid State Electron, 29, 7, 1986 https://doi.org/10.1016/0038-1101(86)90191-7
- J. Pille, C. Adams, T. Christensen, S. Cottier, S. Ehrenreich, T. Kono, D. Nelson, O. Takahashi, S. Tokito, O. Torreiter, O. Wagner, and D. Wendel, "Implementation of the CELL Broadband Engine in a 65 nm SOI Technology Featuring Dual-Supply SRAM Arrays Supporting 6 GHz at 1.3 V," in Digest of Technical Papers, IEEE Solid States Circuits Conference 2007, pp.322-323, Feb. 2007
-
H. Xu, W. Wang, and W. Zhu, "Shape evolution and size-controllable synthesis of
$Cu_2O$ https://doi.org/10.1021/jp061934yoctahedral and their morphology-dependent photocatalytic properties," J. Phys. Chem. B., 110, 13829, 2006 -
B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. Rahman, N. Turro, and S. Brien, "Complete CO oxidation over
$Cu_2O$ nanoparitcles supported on silica gel," Nano Lett., 6, 2095, 2006 https://doi.org/10.1021/nl061457v - R. N. Briskman, "A study of electrodeposited cuprous oxide photovoltaic cells," Sol. Energy Mater. Sol. Cells, 27, 361, 1992 https://doi.org/10.1016/0927-0248(92)90097-9
-
Y. Liu, Y. Liu, R. Mu, H. Yang, C. Shao, J. Zhang, Y. Lu, D. Shen, and X. Fan, "The structural and optical properties of
$Cu_2O$ films electrodeposited on different substrates," Semicond. Sci. Technol., 20, 44, 2005 https://doi.org/10.1088/0268-1242/20/1/007 - Y. C. Zhou and J. A. Switzer, "Glavanostatic electrodeposition and microstructure of copper(I) oxide film," Mater. Res. Innovat., 2, 22, 1998 https://doi.org/10.1007/s100190050056
- T. Maruyama, "Copper oxide thin films prepared from copper dipivaloylmethanete and oxygen by chemical vapor deposition," Jpn. J. Appl. Phys., 37, 4099, 1998 https://doi.org/10.1143/JJAP.37.4099
- V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, "Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper," Applied Surface Science, 254, 3949, 2008 https://doi.org/10.1016/j.apsusc.2007.12.019
- R. Kita, K. Kawaguchi, T. Hase, T. Koga, R. Itti, and T. Morishita, "Effect of oxygen ion energy on the growth of CuO films by molecular beam epitaxy using mass-separated low energy O+ beams," J. Mater. Res., 9, 1280, 1994 https://doi.org/10.1557/JMR.1994.1280
- Xinxin Ma, Gang Wang, Ken Yukimura, and Mingren Sun, "Characteristics of copper oxide films deposited by PBII&D," Surface and Coatings Technology, 201, 6712, 2007 https://doi.org/10.1016/j.surfcoat.2006.09.033
- F. Drobny and D. Pulfrey, "Properties of reactivelysputtered copper oxide thin films," Thin Solid Films, 61, 89, 1979 https://doi.org/10.1016/0040-6090(79)90504-2
- F. Drobny, and D. Pulfrey, "The photovoltaic properties of thin copper oxide films," 13th IEEE Photovoltaic Specialists Conference- 1978, Washington, DC, USA, 180, 1978
-
R. Ismail, I. Ramadhan, and A. Mustafa, "Growth and characterization of
$Cu_2O$ films made by rapid thermal oxidation," China Physics Letter, 2, 2977, 2005 - S. Koynov, M. Brandt, and M. Stutmann, "Black nonreflecting silicon surfaces for solar cells," Appl. Phys. Lett., 88, 203107, 2006 https://doi.org/10.1063/1.2204573
- J. Switzer, R. Liu, E. Bohannan, and F. Ernst, "Epitaxial electrodeposition of crystalline oxide on single –crystalline silicon," J. Phys. Chem. B., 106, 12369, 2002 https://doi.org/10.1021/jp0266188
- L. Chen and C. Pan, "Photosensitivity enhancement of ZnO/Si photodiodes through use of an ultrathin oxide interlayer," Eur. Phys. J. Appl. Phys., 44, 43, 2008 https://doi.org/10.1051/epjap:2008153
- L. Mandalapu, F. Xiu, Z. Yang, D. Zhao, J. Liua, "P-type behavior from Sb –-doped ZnO heterojunction," Appl. Phys. Lett., 88, 112108, 2006 https://doi.org/10.1063/1.2186516
- R. Ismail, "Studies on fabrication and characterization of a high -performance Al-doped ZnO/n-Si (111) heterojunction photodetector," Semicon. Sci. Technol., 23, 075030, 2008 https://doi.org/10.1088/0268-1242/23/7/075030
Cited by
- Making Solar Cells a Reality in Every Home: Opportunities and Challenges for Photovoltaic Device Design vol.1, pp.6, 2013, https://doi.org/10.1109/JEDS.2013.2280887
- Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications vol.28, pp.13, 2013, https://doi.org/10.1557/jmr.2013.150
- Silver oxide nanostructure prepared on porous silicon for optoelectronic application vol.4, pp.4, 2014, https://doi.org/10.1007/s13204-013-0215-z
- The role of using seed-layer assisted electrodeposition method on the growth and the photovoltaic properties of p-Cu2O/n-Si heterojunctions vol.26, pp.2, 2015, https://doi.org/10.1007/s10854-014-2493-y
- O composite vol.3, pp.32, 2015, https://doi.org/10.1039/C5TC01685A
- High efficiency n-Si/p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array vol.12, pp.3, 2016, https://doi.org/10.1007/s13391-016-5356-2
- O:N/c-Si heterojunction diode vol.111, pp.9, 2017, https://doi.org/10.1063/1.4986084
- Characterization of Nanocrystalline p-CuO/n-Si Hetrojunction Prepared by RF-Sputtering vol.1024, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.1024.120
- O Interface by Methyl-Group Passivation and Its Application in Photovoltaic Devices vol.4, pp.6, 2017, https://doi.org/10.1002/admi.201600833
- Decoration of copper oxide nanoplatelets with gold nanoparticles by laser ablation in methanol for photodetection applications vol.50, pp.7, 2018, https://doi.org/10.1007/s11082-018-1567-0