DOI QR코드

DOI QR Code

Standardization of KoFlux Eddy-Covariance Data Processing

KoFlux 에디 공분산 자료 처리의 표준화

  • Hong, Jin-Kyu (Department of Atmospheric Sciences/Global Environment Lab, Yonsei University) ;
  • Kwon, Hyo-Jung (Department of Atmospheric Sciences/Global Environment Lab, Yonsei University) ;
  • Lim, Jong-Hwan (Korea Forest Research Institute, Department of Forest Environment) ;
  • Byun, Young-Hwa (National Institute of Meteorological Research, Climate Research Lab) ;
  • Lee, Jo-Han (National Institute of Meteorological Research, Climate Research Lab) ;
  • Kim, Joon (Department of Atmospheric Sciences/Global Environment Lab, Yonsei University)
  • 홍진규 (연세대학교 대기과학과/지구환경연구소) ;
  • 권효정 (연세대학교 대기과학과/지구환경연구소) ;
  • 임종환 (국립산림과학원 산림생태과) ;
  • 변영화 (국립기상연구소 기후연구과) ;
  • 이조한 (국립기상연구소 기후연구과) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소)
  • Published : 2009.03.30

Abstract

The standardization of eddy-covariance data processing is essential for the analysis and synthesis of vast amount of data being accumulated through continuous observations in various flux measurement networks. End users eventually benefit from the open and transparent standardization protocol by clear understanding of final products such as evapotranspiration and gross primary productivity. In this paper, we briefly introduced KoFlux efforts to standardize data processing methodologies and then estimated uncertainties of surface fluxes due to different processing methods. Based on our scrutiny of the data observed at Gwangneung KoFlux site, net ecosystem exchange and ecosystem respiration were sensitive to the selection of different processing methods. Gross primary production, however, was consistent within errors due to cancellation of the differences in NEE and Re, emphasizing that independent observation of ecosystem respiration is required for accurate estimates of carbon exchange. Nocturnal soil evaporation was small and thus the annually integrated evapotranspiration was not sensitive to the selection of different data processing methods. The implementation of such standardized data processing protocol to AsiaFlux will enable the establishment of consistent database for validation of models of carbon cycle, dynamic vegetation, and land-atmosphere interaction at regional scale.

연속적인 지표 플럭스 관측으로부터 축적되는 엄청난 양의 자료를 체계적으로 처리분석하고 종합하여 일관성 있는 결과를 도출해 내려면 에디 공분산 자료 처리 방법의 표준화가 우선되어야 한다. 이 논문에서는 국내 타워 플럭스 관측 네트워크인 KoFlux의 표준화된 자료 처리 방법을 소개하고, 처리 방법이 다른 경우에 생길 수 있는 지표 플럭스의 불확실성을 평가하였다. 광릉 활엽수림에서 관측된 탄소 플럭스의 경우, 순생태계교환량(net ecosystem exchange, NEE)과 생태계호흡량(ecosystem respiration, Re)은 각각 자료 처리 방법의 차이에 따라 민감한 반응을 보였다. 그러나 두 양이 서로 상쇄되어, 총일차생산량(gross primary productivity, GPP=NEE+Re)은 자료 처리 방법이 다른 경우에도 불구하고 오차 범위 내에서 일치하였다. 이러한 결과는 GPP를 산출할 때에 Re를 독립적으로 관측하는 것이 중요함을 시사한다. 반면 수증기 플럭스(증발산)의 경우, 야간 토양 증발이 작아서 연 적산증발산량은 자료 처리 방법에 민감하지 않았다. 이렇게 표준화된 자료처리 프로토콜을 아시아 타워 플럭스 네트워크인 AsiaFlux에 적용할 경우, 지역 규모 탄소 순환, 역학 식생 및 지면과정 모형의 검증을 위한 일관성 있는 데이터베이스의 구축이 가능해 질 것이다.

Keywords

References

  1. Acevedo, O. C., O. L. L. Mores, G. A. Degrazia, D. R. Fitzjarrald, A. O. Manzi, and J. G. Campos, 2009: Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agricultural and Forest Meteorology 149, 1-10 https://doi.org/10.1016/j.agrformet.2008.06.014
  2. Burba G. G., D. J. Anderson, L. Xu, and D. K. McDermitt, 2006: Additional term in the Webb-Pearman-Leuning correction due to surface heating from an open-path gas analyzer, EOS Trans. AGU, 87(52), Fall Meeting Supplementary, Abstract C12A-03
  3. Grelle, A., and G. Burba, 2007: Fine-wire thermometer to correct CO2 fluxes by open-path analyzers for artificial density fluctuations. Agricultural and Forest Meteorology 147, 48-57 https://doi.org/10.1016/j.agrformet.2007.06.007
  4. Gu, L., E. M. Falge, T. Boden, D. D. Baldocchi, T. A. Black, S. R. Saleska, T. Suni, B. Verma, T. Vesala, S. C. Wofsy, and L. Xu, 2005: Obective threshold determination for nighttime eddy flux filtering. Agricultural and Forest Meteorology 128, 179-197 https://doi.org/10.1016/j.agrformet.2004.11.006
  5. Hong J., and J. Kim, 2002: On Processing Raw Data from Micrometeorological Field Experiments. Korean Journal of Agricultural and Forest Meteorology 4, 119-126. (in Korean with English abstract)
  6. Kaimal J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their structure and measurement. Oxford University Press, 289pp
  7. Kang, M., H. Kwon, J. Hong, and J. Kim, 2009: Estimation of soil evaporation by low level eddy covariance system in deciduous and coniferous forests. Preprints, CarboEastAsia Workshop, Tsukuba, Japan
  8. Kwon, H., S. Park, M. Kang, J. Yoo, R. Yuan, and J. Kim. 2007: Quality Control and Assurance of Eddy Covariance Data at the Two KoFlux Sites. Korean Journal of Agricultural and Forest Meteorology 9, 260-267. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.4.260
  9. Lee, X., W. Massman, and B. Law, 2004: Handbook of Micrometeorology. Kluwer Academic Publishers, Dordrech, The Netherlands, 250pp
  10. Papale, D., M. Reichstein, M. Aubinet, E. Canfora1, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini1, T. Vesala, and D. Yakir, 2006: Towards astandardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeoscience 3, 571-583 https://doi.org/10.5194/bg-3-571-2006
  11. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 https://doi.org/10.1111/j.1365-2486.2005.001002.x
  12. van Gorsel, E., R. Leuning, H. Cleugh, H. Keith, and T. Suni, 2007: Nocturnal carbon efflux: reconciliation of eddy covariance and chamber measurements using an alternative to the u*-threshold filtering. Tellus 59B, 397-403
  13. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of Royal Meteorological Society 106, 85-100 https://doi.org/10.1002/qj.49710644707
  14. Wesely, M., 1970: Eddy correlation measurements in the atmospheric surface layer over agricultural crops, Ph. D. Dissertation, University Wisconsin, Madison, Wisconsin, USA
  15. Wilczak, J. M., S. P. Oncley, and S. Stage, 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99, 127-150 https://doi.org/10.1023/A:1018966204465
  16. Young, P. C., C. J. Taylor, W. Tych, D. J. Pedregal, and P. G. McKenna, 2004: The Captain toolbox, Center for Research on Environmental Systems and Statistics, Lancaster University
  17. Yuan, R., M. Kang, S. Park, J. Hong, D. Lee, and J. Kim, 2007: The Effect of Coordinate Rotation on the Eddy Covariance Flux Estimation in a Hilly KoFlux Forest Catchment. Korean Journal of Agricultural and Forest Meteorology 9, 100-108 https://doi.org/10.5532/KJAFM.2007.9.2.100

Cited by

  1. The Estimation of Annual Net Ecosystem Exchange of CO2in an Apple Orchard Ecosystem of South Korea vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.348
  2. Comparison of Surface Fluxes Based on Landuse Characteristics Near Gangjeong-Goryeong Weir of the Nakdong River vol.34, pp.6, 2013, https://doi.org/10.5467/JKESS.2013.34.6.561
  3. On the Nighttime Correction of CO2Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain vol.16, pp.3, 2014, https://doi.org/10.5532/KJAFM.2014.16.3.233
  4. On Estimating Wet Canopy Evaporation from Deciduous and Coniferous Forests in the Asian Monsoon Climate vol.13, pp.3, 2012, https://doi.org/10.1175/JHM-D-11-07.1
  5. Modeling gross primary production of paddy rice cropland through analyses of data from CO 2 eddy flux tower sites and MODIS images vol.190, 2017, https://doi.org/10.1016/j.rse.2016.11.025
  6. Evaluation of statistical gap fillings for continuous energy flux (evapotranspiration) measurements for two different land cover types vol.29, pp.8, 2015, https://doi.org/10.1007/s00477-015-1101-x
  7. Net Radiation Estimation Using Flux Tower Data and Integrated Hydrological Model: For the Seolmacheon and Chungmichen Watersheds vol.46, pp.3, 2013, https://doi.org/10.3741/JKWRA.2013.46.3.301
  8. Quality Control and Characteristic of Eddy Covariance Data in the Region of Nakdong River vol.23, pp.3, 2013, https://doi.org/10.14191/Atmos.2013.23.3.307
  9. Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products vol.49, pp.11, 2016, https://doi.org/10.3741/JKWRA.2016.49.11.903
  10. Understanding of the Common Land Model performance for water and energy fluxes in a farmland during the growing season in Korea vol.24, pp.8, 2010, https://doi.org/10.1002/hyp.7567
  11. Process Networks of Ecohydrological Systems in a Temperate Deciduous Forest: A Complex Systems Perspective vol.16, pp.3, 2014, https://doi.org/10.5532/KJAFM.2014.16.3.157
  12. Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications vol.17, pp.5, 2011, https://doi.org/10.1111/j.1365-2486.2010.02337.x
  13. Evaluation of geostationary satellite (COMS) based Priestley–Taylor evapotranspiration vol.159, 2015, https://doi.org/10.1016/j.agwat.2015.05.017
  14. Remote sensing-based evapotranspiration algorithm: a case study of all sky conditions on a regional scale 2015, https://doi.org/10.1080/15481603.2015.1056288
  15. Synthetic retrieval of hourly net ecosystem exchange using the neural network model with combined MI and GOCI geostationary sensor datasets and ground-based measurements vol.38, pp.23, 2017, https://doi.org/10.1080/01431161.2017.1375573
  16. Effects of Different Averaging Operators on the Urban Turbulent Fluxes vol.24, pp.2, 2014, https://doi.org/10.14191/Atmos.2014.24.2.197
  17. Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis vol.47, pp.1, 2014, https://doi.org/10.3741/JKWRA.2014.47.1.25
  18. Assessment of Outgoing Longwave Radiation using COMS : Cheongmi and Sulma Catchments vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.465
  19. Corrections on CH4 Fluxes Measured in a Rice Paddy by Eddy Covariance Method with an Open-path Wavelength Modulation Spectroscopy vol.17, pp.1, 2015, https://doi.org/10.5532/KJAFM.2015.17.1.15
  20. Outlier Detection and Replacement for Vertical Wind Speed in the Measurement of Actual Evapotranspiration vol.34, pp.5, 2014, https://doi.org/10.12652/Ksce.2014.34.5.1455
  21. Comparison of Carbon Budget between Rice-barley Double Cropping and Rice Mono Cropping Field in Gimje, South Korea vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.337
  22. Uncertainty in carbon exchange modelling in a forest canopy due to kB−1 parametrizations vol.138, pp.664, 2012, https://doi.org/10.1002/qj.944
  23. Identifying CO 2 advection on a hill slope using information flow vol.232, 2017, https://doi.org/10.1016/j.agrformet.2016.08.003
  24. Interannual variations in methane emission from an irrigated rice paddy caused by rainfalls during the aeration period vol.223, 2016, https://doi.org/10.1016/j.agee.2016.02.032
  25. Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.366
  26. An improved parameterization of the allocation of assimilated carbon to plant parts in vegetation dynamics for Noah-MP vol.9, pp.4, 2017, https://doi.org/10.1002/2016MS000890
  27. Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.233
  28. Wet surface resistance of forest canopy in monsoon Asia: Implications for eddy-covariance measurement of evapotranspiration vol.28, pp.1, 2014, https://doi.org/10.1002/hyp.9547
  29. Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing vol.18, pp.1, 2013, https://doi.org/10.1007/s10310-012-0378-6
  30. Quantitative Study of CO2 based on Satellite Image for Carbon Budget on Flux Tower Watersheds vol.57, pp.3, 2015, https://doi.org/10.5389/KSAE.2015.57.3.109
  31. Aerodynamic roughness variation with vegetation: analysis in a suburban neighbourhood and a city park pp.1573-1642, 2018, https://doi.org/10.1007/s11252-017-0710-1
  32. New gap-filling and partitioning technique for H<sub>2</sub>O eddy fluxes measured over forests vol.15, pp.2, 2018, https://doi.org/10.5194/bg-15-631-2018