DOI QR코드

DOI QR Code

Adsorption of Divalent Cationic Herbicides from Aqueous Solution by FA-zeolite A and X

FA-Zeolite A 및 X에 의한 수용액 중 양이온성 제초제의 흡착

  • Choi, Choong-Lyeal (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Yeo, Sang-Woon (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Park, Man (Department of Agricultural Chemistry, Kyungpook National University)
  • Published : 2009.12.30

Abstract

The purpose of this study is to elucidate the adsorption properties of fly ash (FA)-derived zeolites A and X for the divalent cationic herbicides, paraquat and diquat. Their adsorption isotherms were well fitted to the Langmuir equation, indicating that adsorption mainly occurred on the crystal surface. FA-zeolite X showed a higher adsorption capacity than that of FA-zeolite A due to wide pore window size in spite of its low CEC. The equilibrium adsorption increased with increasing the reaction temperature because of the enhanced molecule activity and the thermal expansion of zeolite pore windows. Overall, these results demonstrated that the FA-zeolite synthesized from fly ash could be used as a low-cost mineral adsorbent for the removal of environmental cationic organic pollutants from the aqueous solution.

Keywords

References

  1. Florencio, M. H., Pires, E., Castro, A. L., Nunes, M. R., Borges, C. and Costa, F. M. (2004) Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates, Chemosphere, 55(3), 345-355 https://doi.org/10.1016/j.chemosphere.2003.11.013
  2. Rytwo, G., Nir, S. and Margulies, L. (1996) Adsorption and intercations of diquat and paraquat with montmorillonite, Soil. Sci. Soc. Am. J. 60, 601-610 https://doi.org/10.2136/sssaj1996.03615995006000020038x
  3. Pateiro-Moure, M., Martınez-Carballo, E., Arias-Estevez, M., Simal-Gandara, J. (2008) Determination of quaternary ammonium herbicides in soils comparison of digestion, shaking and microwave-assisted extractions, J. Chromatography A, 1196-1197, 110-116 https://doi.org/10.1016/j.chroma.2008.03.081
  4. Kwon, J. W., Kim, Y. S., Choi, J. W. and Lee, K. S. (1997) Extraction method for paraquat from soil, Kor. J. Environ. Agric. 16(3), 239-244
  5. Tsai, W. T., Lai, C. W. and Hsien, K. J. (2004) Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth, Chemosphere, 55(6), 829-837 https://doi.org/10.1016/j.chemosphere.2003.11.043
  6. Andrew, J. A., Yaron, V. B. and Nye, P. H. (1983) Vertical transport of pesticides into soil when adsorbed on suspended particles, J. Agric. Food Chem. 31(3), 662-664 https://doi.org/10.1021/jf00117a048
  7. Pateiro-Moure, M., Perez-Novo, C., Arias-Estevez, M. Lopez-Periago, E., Martínez-Carballo, E. and Simal-Gandara, J. (2007) Influence of copper on the adsorption and desorption of paraquat, diquat, and difenzoquat in vineyard acid soils, J. Agric. Food Chem. 55, 6219-6226 https://doi.org/10.1021/jf071122e
  8. Tucker, B. W., Pack, D. E. and Ospenson, J. M. (1967) Adsorption of bipyridylium herbicides in soil, J. Agric. Food Chem. 15, 1005-1008
  9. Amondham, W., Parkpian, P., Polprasert, C., Delaune, R. D. and Jugsujinda, A. (2006) Paraquat adsorption, degradation and remobilization in tropical soils of Thailand, J. Environ. Sci. Health Part B, 41, 485-50 https://doi.org/10.1080/03601230600701635
  10. Hus, S. T. and Pan, T. C. (2007) Adsorption of paraquat using methacrylic acid-modified rice husk, Bioresource Technol. 98, 3617-3621 https://doi.org/10.1016/j.biortech.2006.11.060
  11. Hamadi, N. K., Swaminathan, S. and Chen, X. D. (2004) Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires, J. Hazard. Mater. B, 112, 133-41 https://doi.org/10.1016/j.jhazmat.2004.04.011
  12. Kang, M. (2002) Preparation of $TiO_2$ photocatalyst film and its catalytic performance for 1,1'-dimethyl- 4,4'-bipyridinium dichloride decomposition, Appl. Catal. B, 37, 187-196 https://doi.org/10.1016/S0926-3373(01)00303-4
  13. Moctezuma, E., Leyva, E., Monreal, E., Villegas, N. and Infante, D. (1999) Photocatalytic degradation of the herbicide paraquat, Chemosphere, 39, 511-517 https://doi.org/10.1016/S0045-6535(98)00599-2
  14. Gonzalez-Pradas, E., Villafranca-Sanchez, M., Gallego- Campo, A., Urena-Amate, D., Socias-Viciana, M. (1997) Removal of 1,10-dimethyl-4,40-bipyridinium dichloride from aqueous solution by natural and activated bentonite, J. Chem. Tech. Biotechnol. 69, 173-78 https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<173::AID-JCTB709>3.0.CO;2-A
  15. Nakamura, T., Kawasaki, N., Ogawa, H., Tanada, S., Kogirima, M., Imaki, M. (1999) Adsorption removal of paraquat and diquat onto activated carbon at different adsorption temperature, Toxicol. Environ. Chem. 70, 275-280 https://doi.org/10.1080/02772249909358755
  16. Walcarius, A. and Mouchotte, R. (2004) Efficient in vitro paraquat removal via irreversible immobilization into zeolite particles, Archives Environ. Contamin. Toxicol. 46, 135-140 https://doi.org/10.1007/s00244-003-2242-3
  17. Arbuznikov, A., Vasilyev, V. and Goursot, A. (1998) Relationships between the structure of a zeolite and its adsorption properties, Surface Sci. 397, 395-405 https://doi.org/10.1016/S0039-6028(97)00760-7
  18. Nicholson, D. and Pellenq, R. J. M. (1998) Adsorption in zeolites: intermolecular interactions and computer simulation, Adv. Colloid & Interface Sci. 76-77, 179-202 https://doi.org/10.1016/S0001-8686(98)00046-3
  19. Henmi, T. (1987) Synthesis of hydroxy sodalite (Zeolite) from waste coal ash, Soil Sci. Plant Nutr. 33, 517-521 https://doi.org/10.1080/00380768.1987.10557599
  20. Lee, D. B., Lee, K. B., Lee, S. B., Han, S. S. and Henmi, T. (1998) Sorption of heavy metals from the wastewater by the artificial zeolite, J. Kor. Soc. Soil. Sci. 31(1), 61-66
  21. Lee, D. B., Lee, K. B., Han, S. S. and Henmi, T. (1998) Granulation of artificial zeolite for the simultaneous removal of nitrogen and phosphorous from the wastewater, J. Kor. Soc. Soil. Sci. 31(1), 67-71
  22. Luna, Y. Otal, E., Vilches, L. F., Vale, J., Querol, X. and Pereira, C. F. (2007) Use of zeolitised coal fly ash for landfill leachate treatment: A pilot plant study, Waste Manage. 27(12), 1877-1883 https://doi.org/10.1016/j.wasman.2006.10.016
  23. Chang, H. L. and Shin, W. H. (2000) Synthesis zeolite A and X from fly ashes and their ionexchange behavior with cobalt ions, Ind. Eng. Chem. Res. 39, 4185-4191 https://doi.org/10.1021/ie990860s
  24. Querol, X., Moreno, N., Umana, J. C., Alastuey, A., Hernandez, A., Lopez-Soler, A. and Plana, F. (2002) Synthesis of zeolites from fly ash: an overview, Inter. J. Coal Geol. 50, 413-423 https://doi.org/10.1016/S0166-5162(02)00124-6
  25. Giles, C. H., Mcewan, T. H., Nakhwa, S. N., and Smith, D. (1960) Studies in adsorption. Part Ⅱ. A system of classification of solution adsorption isotherms, J. Chem. Soc. 4, 3973-3993
  26. Draoui, K., Denoyel, R., Chgoura, M. and Rouquerol, J. (1999) Adsorption of paraquat on minerals ; A thermodynamic study, J. Therm. Anal. Calorime. 58, 597-606 https://doi.org/10.1023/A:1010152411288