Success Factors for Web-based Agricultural Information Systems

웹기반 농업정보시스템 성공요인에 관한 연구

  • Published : 2009.12.30

Abstract

This study reviews and modifies general IS success models to find success factors of WIS(Web-based Information Systems) and to confirm the relationship between WIS success and user's satisfaction of web use. A WISSM(Web-based Information Success Model extended to include EQ(E-Quality) is developed to anticipate user's intention to use Web-based Agricultural Information System and fit into the survey data from 252 WIS users of RDA(Rural Development Administration). PLS is applied to estimate a structural model based on EQ-WISSM to test hypotheses including 1) users reach a high level of intention to use Web-based Information Systems when they feel a high level of interactivity among an 'E-Quality', 'Decision Making Support Satisfaction' and 'Task Support Satisfaction', and E-Quality boosts intention to use Web-based Information Systems. The results show high path coefficients and $R^2$ values and find followings; First, the EQ-WISSM explains the user's intention to use WAIS quite well. Second, E-Quality can be used well in web-based IS environment to predict IS Success. Finally, this research finds the importance of 'Task Support Satisfaction' as a mediator between 'Decision Making Support Satisfaction', 'E-Quality' and 'Intention to Use'.

Keywords

References

  1. 홍형득, 장시영, 1994, 행정정보시스템의 성과와 그 영향요인에 관한 연구, 한국행정학보, 28(4), 1191-1210
  2. Adams, D. A., Nelson, R. R., & Todd, P. A. 1992, Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly, 16(2), 227-247 https://doi.org/10.2307/249577
  3. Ajzen, I., & Fishbein, M., 1980, Understanding attitudes and predicting social behavior, New Jersey: Prentice Hall
  4. Ashton, R. H., & Willingham, J. J., 1988, Using and evaluating audit decision aids. Audit Symposium IX. Proceedings of the 1988 Touche Ross/University of Kansas Symposium on Auditing Procedures, University of Kansas Lawrence, KS
  5. Bailey, J. E., & Pearson, S. W., 1983, Development of a tool for measurement and analysing computer user satisfaction, Management Science, 29(5), 530-545 https://doi.org/10.1287/mnsc.29.5.530
  6. Bhattacherjee, A. 2001, Understanding information systems continuance: An expectation- confirmation model, MIS Quarterly, 25(3), 351-370 https://doi.org/10.2307/3250921
  7. Blattberg, R. C., & Hoch, S. J., 1990, Database models and managerial intuition: 50% model + 50% manager. Management Science, 36(8), 887-899 https://doi.org/10.1287/mnsc.36.8.887
  8. Chin, W. W., 1998, Issues and opinion on structural equation modeling, MIS Quarterly, 22(1), 7-16
  9. Davis, F. D., 1989, Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13(3), 319-340 https://doi.org/10.2307/249008
  10. Davis S. A., & Bostrom, R. P., 1992, An experimental investigation of the roles of the computer interface and individual characteristics in learning of computer systems. International Journal of Human-Computer Interaction, 4(2), 143-172 https://doi.org/10.1080/10447319209526033
  11. Davis, F., Bagozzi, R., & Warshaw, P., 1992, Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132 https://doi.org/10.1111/j.1559-1816.1992.tb00945.x
  12. Dawes, R.M., Faust, D., & Meehl, P. E., 1989, Clinical versus actuarial judgment. Science, 243, 1668-1674 https://doi.org/10.1126/science.2648573
  13. DeLone, W. H., & McLean, E. R., 1992, Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95 https://doi.org/10.1287/isre.3.1.60
  14. DeLone, W. H., & McLean, E. R., 2003, The DeLone and McLean model of information systems success: A ten-year update, Journal of Management Information Systems, 19(4), 9-30
  15. Doll, W. J., & Torkzadeh, G., 1988, The measurement of end-user computing Satisfaction, MIS Quarterly, 12(2), 259-275 https://doi.org/10.2307/248851
  16. Dysart, J., 1998, E Genie site leads way in personalization, Advertising Age's Business Marketing, 83(10), 33
  17. Ein-Dor, P., & Segev, E., 1981, A paradigm for management information systems, New York: Praeger
  18. Garrity E. J., Glassberg, B., Kim, Y. J., Sanders, G. L., & Shin, S. K., 2005, An experimental investigation of Web-based information systems success in the context of electronic commerce, Decision Support Systems 39, 485-503 https://doi.org/10.1016/j.dss.2004.06.015
  19. Garrity, E. J. & Sanders, G. L., 1998, Information Systems Success Measurement. Harrisburg: Idea Group Publishing
  20. Gefen, D., & Straub, D. W., 2000, Some antecedents of consumer trust in B2C e-commerce : Experiments in e-Products and e-Service, Working Paper, 1-35
  21. Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., & Tam, K. Y., 1999, Examining the technology acceptance model using physician acceptance of telemedicine technology, Journal of Management Information Systems, 16(2), 91-112
  22. Igbaria, M., & Nachman, S. A., 1990, Correlates of user satisfaction with end user computing: An exploratory study, Information & Management, 19(2), 73-82 https://doi.org/10.1016/0378-7206(90)90017-C
  23. Ives, B., Olson, M. H., & Baroudi, J. L., 1983, The measurement of user information satisfaction, Communications of the ACM, 26(10), 785-793 https://doi.org/10.1145/358413.358430
  24. Kim, Y. J., Kishore, R., & Sanders, G. L., 2005, From DQ to EQ: Understanding data quality in the context of e-business systems, Communications of the ACM, 48(10), 75-81 https://doi.org/10.1145/1089107.1089108
  25. Mayer, R. E., 1981, The psychology of how novices learn computer programming, Computing Surveys, 13(1), 121-141 https://doi.org/10.1145/356835.356841
  26. Nielsen, J., 2000, Designing web usability. Indianapolis: New Riders Publishing
  27. Nisbett, R. E., & Ross, L. D., 1980, Human inference: Strategies and shortcomings of social judgment, New Jersey: Prentice Hall
  28. O'Keefe, R. M., & McEachern, T., 1998, Web-based customer decision support systems. Communications of the ACM, 41(3), 71-78 https://doi.org/10.1145/272287.272300
  29. Palmer, J. W., 2002, Web site usability, design, and performance metrics, Information Systems Research, 13(2), 151-167 https://doi.org/10.1287/isre.13.2.151.88
  30. Seddon, P. B., 1997, A respecification and extension of the DeLone and McLean model of IS Success. Information Systems Research, 8(3), 240-253 https://doi.org/10.1287/isre.8.3.240
  31. Taylor, S., & Todd, P. A., 1995, Understanding information technology usage: A test of competing models, Information Systems Research, 6(2), 144-176 https://doi.org/10.1287/isre.6.2.144
  32. Werts, C. E., Lin, R. L., & Joreskog, K. G., 1974, Intraclass reliability estimates: Testing structural assumptions, Educational and Psychological Measurement, 34(1), 25-33 https://doi.org/10.1177/001316447403400104
  33. Yoo, C. W., Moon, J., Choe, Y. C., & Kim, Y. J., 2007, Antecedent factors influencing customer decision support satisfaction from e-WOM systems, AMCIS 2007 proceedings, Keystone, Colorado
  34. Zhang, P., Dran, G. M. von, Small, R., & Barcellos, S., 1999, Websites that satisfy users: A theoretic framework for web user interface design and evaluation, Proceedings of the 32th Hawaii International Conference on Systems Science, Kauai, Hawaii