Degradation Characteristics of Cross-linked Hyaluronic Acid Membrane

가교된 히아루론산 막의 분해 특성

  • Cheong, Seong-Ihl (Department of Chemical Engineering and Nano-Bio Technology, Hannam University) ;
  • Cho, Gu-Hyun (Department of Chemical Engineering and Nano-Bio Technology, Hannam University)
  • 정성일 (한남대학교 나노생명화학공학과) ;
  • 조구현 (한남대학교 나노생명화학공학과)
  • Published : 2009.12.30

Abstract

The degradation characteristics of cross-linked lactide/hyaluronic acid (LA/HA) membranes were investigated for purpose of applying to tissue engineering. The lactide/hyaluronic acid cross-linked with 1,3-butadiene diepoxide (BD) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) was degradated in deionized water in water bath at $37^{\circ}C$. As the LA/HA mole ratio or crosslinking agent concentration decreased, the degradation rate of the crosslinked membranes increased. In order to investigate the structure change of the membrane in the degradation process, the control sample and 3, 6, 9 days-degradated samples were analysed by the nuclear magnetic resonance spectroscopy. In case of the membranes crosslinked with EDC, the HA-EDC bonding structure was degradated slowly whereas the HA-LA bonding structure was degradated quickly and dissappeared completely after 6 days. In case of the membranes crosslinked with BD, all the crosslinked bonding structure degradated slowly. The HA-BD bonding structure maintained its original state about 89, 83% in case of 3, 6 days-degardated samples respectively whereas the HA-LA bonding structure maintained its original state about 83, 65%. The scanning electron microscopy of the degradated membranes showed that the pore density in the surface, and the structure in the surface and cross section, of the before and after-degradation membranes did not change greatly, so the membranes was shown to be applied to materials for tissue engineering.

조직 공학용 지지체로 사용할 목적으로 제조된 가교된 lactide/hyaluronic acid (LA/HA) 막의 분해 특성을 살펴보았다. 가교제 1,3-butadiene diepoxide (BD), 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)를 사용하여 얻어진 고분자 막을 $37^{\circ}C$로 조절된 항온조에서 증류수에 침전시켜 분해시켰다. 가교반응시 LA/HA 몰비가 작을수록, 가교제의 농도가 작을수록 생성된 고분자 막의 분해속도가 증가하였다. 분해될 때 막의 구조 변화를 살펴보기 위해 분해 전, 3일, 6일, 9일 후의 시료를 채취하여 핵자기 공명 분광법으로 분자 구조를 살펴보았다. EDC로 가교시킨 막의 경우 시간이 지남에 따라 HA-EDC 결합구조는 서서히 분해되는데 HA-LA 결합구조는 급격히 분해되어 6일 후에는 완전히 소멸되었다. BD로 가교시킨 막의 경우 가교된 결합 구조 모두 서서히 분해되었으며 3일, 6일이 지나면서 HA-BD 결합 구조는 원래의 89, 83%가 유지되었으나 HA-LA 결합 구조는 원래의 83, 65%로 유지되었다. 분해된 막을 전자 현미경으로 측정한 결과 분해 전후 표면에서 기공의 밀도는 크게 차이나지 않았으며, 표면과 측면의 구조도 크게 차이가 나지 않아 조직공학용 재료로써 사용할 때 아무런 문제가 없는 것으로 관찰되었다.

Keywords

References

  1. G. P. Chen, Y. Ito, Y. Imanishi, A. Magnani, S. Lamponi, and R. Barbucci, “Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity,' Bioconjugate Chem., 8, 730 (1997) https://doi.org/10.1021/bc9700493
  2. J. Aigner, J. Tegeler, P. Hutzler, D. Campoccia, A. Pavesio, C. Hammer, E. Kastenbauer, and A. Naurnann, 'Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester,' J. Biomed. Mater. Res., 42, 172 (1998) https://doi.org/10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO;2-M
  3. G. D. Prestwitch, D. M. Marecak, and J. F. Marecek, 'Controlled chemical modification of hyaluronin acid: synthesis, applications, and biodegradation of hydrazide derivatives,' J. Control. Rel., 53, 93 (1998) https://doi.org/10.1016/S0168-3659(97)00242-3
  4. T. Coviello, M. Dentimi, G. Rambone, M. Carafa, and F. Alhaique, 'A novel co-crosslinked polysaccharide: studies for a controlled delivery matrix,' J. Controlled Rel., 55, 57 (1998) https://doi.org/10.1016/S0168-3659(98)00028-5
  5. H. S. Nam, J. H. Kim, J. H. An, and D. J. Jung, 'Synthesis of Hyaluronic acid scaffold for tissue engineering and evaluation of its drug release behaviors,' Polymer, 25(4), 476 (2001)
  6. S. N. Park, H. J. Lee, K. H. Lee, and H. Suh, 'Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethyl-aminopropyl) carbodiimide cross-linking,' Biomaterials, 22, 1205 (2002) https://doi.org/10.1016/S0142-9612(00)00268-4
  7. S. N. Park, H. J. Lee, K. H. Lee, and H. Suh, 'Biological characterization of EDC-crosslinked collagen-hyaluronic acid matrix in dermal tissue restoration,' Biomaterials, 24, 1631 (2003) https://doi.org/10.1016/S0142-9612(02)00550-1
  8. N. J. Turner, C. M. Kielty, M. G. Walker, and A. E. Canfield, 'A novel hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells in tissue engineered vascular grafts,' Biomaterials, 25, 5955 (2004) https://doi.org/10.1016/j.biomaterials.2004.02.002
  9. A. Maleki, A. Kjφniksen, and B. Nystrom, 'Characterization of the chemical degradation of hyaluronic acid during gelation in the presence of different cross-linker agents,' Carbohydr. Res., 342, 2776 (2007) https://doi.org/10.1016/j.carres.2007.08.021
  10. S. H. Kim, S. H. Kim, Y. M. Shin, and H. S. Shin, Polymer science and technology, 18(5), 450 (2008)
  11. J. Y. Kwon and S. I. Cheong, 'Characterization of hyaluronic acid membrane containing lactic acid,' Membrane Journal, 5(1), 8 (2005)
  12. J. Y. Kwon and S. I. Cheong, 'Synthesis and characterization of hyaluronic acid bead crosslinked by 1,3-butadiene diepoxide,' Polymer, 29(5), 445 (2005)
  13. J. Y. Kwon and S. I. Cheong, 'Characterization of hyaluronic acid membrane crosslinked with lactide,' Polymer, 29(6), 599 (2005)
  14. M. S. Kim, J. Y. Kwon, and S. I. Cheong, 'Synthesis of lactide/hyaluronic acid polymer membrane for the application of drug delivery system,' Membrane Journal, 15(4), 281 (2005)
  15. W. J. Kim, J. Y. Kwon, S. I. Cheong, and I. S. Kim, 'Cytotoxicity of hyaluronic acid membrane crosslinked with lactide,' Korean J. Biotechnol. Bioeng., 21(4), 255 (2006)
  16. G. S. Han, J. E. Bae, I. S. Kim, and S. I. Cheong, 'Synthesis of lactide/hyaluronic acid polymer membrane for the application of drug delivery system,' Membrane Journal, 18(2), 124 (2008)
  17. G. S. Han, J. E. Bae, I. S. Kim, and S. I. Cheong, 'Application of hyaluronic acid membrane crosslinked with 1,3-butadiene diepoxide,' Polymer, 32(4), 390 (2008)