DOI QR코드

DOI QR Code

Optimal Earth-Moon Trajectory Design using Constant and Variable Low Thrust

등저추력과 가변저추력을 이용한 지구-달 천이궤적 설계

  • Published : 2009.09.01

Abstract

For preparing Korean lunar missions, optimal Earth-Moon transfer trajectory is designed using continuous low thrust. Using both constant and variable low thrusting method, "End-to-End" mission analysis is made from beginning of the Earth departure to the final lunar arrival. Spacecraft's equations of motion is expressed using N-body dynamics including the gravitational effects due to the Earth, Moon, Sun and also with Earth's $J_2$ effects. Planets' exact locations are computed accurately with JPL's DE405 ephemeris. As a results, optimal thrust steering angle's characteristics are discovered which showed almost tangential direction burns at the near of central planets. Also, it is confirmed that variable low thrusting method is more efficient than constant thrusting method, and can save about 5% of fuel consumption. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using low thrust engines. Also, it is expected to be used as a basis of more detailed mission analyzing tool.

우리나라의 달탐사를 위하여, 저추력을 이용한 최적의 지구-달 천이궤적 설계를 진행하였다. 탐사선의 추력 형태는 등저추력과 가변저추력 모두를 적용하였으며 각각에 대한 탐사선의 지구 출발부터 달 포획에 이르는 전반적인 모든 단계에 대한 비행 궤적이 설계되었다. 보다 실질적인 우주 환경의 모사를 위하여 행성의 정밀 위치는 JPL의 정밀 천체력인 DE405 천체력을 이용하였으며 지구, 달, 태양의 중력에 의한 섭동과 지구 $J_2$항에 의한 영향을 포함한 N-체의 동력학 방정식이 사용되었다. 탐사선이 지구 근처에 있을 때, 추력의 방향각은 항상 거리의 접선방향이고, 가변저추력을 이용한 경우가 등저추력을 이용한 경우보다 연료를 약 5% 정도 더 절감할 수 있음을 확인하였다. 본 연구에서 구현 및 제시된 저추력을 이용한 최적의 달 탐사 임무 설계 알고리즘과 그 결과는 미래 한국의 달 탐사를 대비하는데 있어서 많은 사전 지식을 제공할 것이며 장차 심화된 임무 설계를 위한 알고리즘의 기반으로 사용될 수 있다.

Keywords

References

  1. 송영주, 박상영, 최규홍, 심은섭, “한국형 달탐사 임무 예비 설계 소프트웨어의 개발”, 한국항공우주학회지, 제36권 4호, pp. 357-368, 2008.
  2. Perkins, F. M., “Flight Mechanics ofLow-Thrust Spacecraft”, Journal of AerospaceScience, Vol. 26, pp. 291-297, 1959.
  3. Edelbaum, T. N., “Propulsion Requirementsfor Controllable Satellites”, ARS Journal, Vol. 31,pp. 1079-1089, 1961. https://doi.org/10.2514/8.5723
  4. Oleson, S. R., "Mission Advantages of ConstantPower, Variable Isp Electrostatic Thrusters", NASATechnical Memo 2000-210477, 2000.
  5. Russell, C. T., Abshire, J., A'Hearn, M., Arnold, J., Elphic, R. C., Head, J., Pieters, C., Hickman, M., Palac, D., Kluever, C., Konopliv, A., Metzger, A., Sercel, J., McCord, T., Phillips, R. J., Purdy, W., Rosenthal, R., and Sykes, M., “A Solar Electric Propulsion Mission to the Moon and Beyond", Journal of Advances in Space Research, Vol. 18, pp. 75-80, 1996. https://doi.org/10.1016/0273-1177(96)00092-0
  6. Enright, P. J. and Conway, B. A., “DiscreteApproximations to Optimal Trajectories UsingDirect Transcription and Nonlinear Programming”,Journal of Guidance, Control, Dynamics, Vol.15, pp. 994-1002, 1992. https://doi.org/10.2514/3.20934
  7. Pierson, B. L. and Kluever, C. A.,"Three-Stage Approach to Optimal Low-ThrustEarth-Moon Trajectories", Journal of Guidance,Control, Dynamics, Vol.17, pp. 1275-1282, 1994. https://doi.org/10.2514/3.21344
  8. Kluever, C. A. and Pierson, B. L.,"OptimalLow-Thrust Three-Dimensional Earth-MoonTrajectories", Journal of Guidance, Control,Dynamics, Vol. 18, pp. 830-837, 1995. https://doi.org/10.2514/3.21466
  9. Kluever, C. A. and Pierson, B. L.,"OptimalEarth-Moon Trajectories Using Nuclear ElectricPropulsion, Jouranl of Guidance, Control,Dynamics, Vol. 20, pp. 239-245, 1997. https://doi.org/10.2514/2.4058
  10. Herman, A. L. and Conway, B. A.."Optimal, Low-Thrust, Earth-Moon OrbitTransfer", Journal of Guidance, Control,Dynamics, Vol. 21, pp. 141-147, 1998. https://doi.org/10.2514/2.4210
  11. Betts, J. T., and Erb, S. O., "Optimal Low Thrust Trajectories to the Moon", Journal of Applied Dynamical Systems, Vol.2, pp. 144-170, 2003. https://doi.org/10.1137/S1111111102409080
  12. Foing, B. H., Racca, G.D., Marini, A.,Evrard, E., Stagnaro, L., Almeida, M., Koschny, D.,Frew, D., Zender, J., Heather, J., Grande, M.,Huovelin, J., Keller, H.U., Nathues, A., Josset, J.L.,Malkki, A., Schmidt, W., Noci, G., Birkl, R., Iess,L., Sodnikk, Z. and McManamonk, P., “SMART-1Mission to the Moon: Status, First Results andGoals”, Advances in Space Research, Vol. 37,pp. 6-13, 2006. https://doi.org/10.1016/j.asr.2005.12.016
  13. Raymana, M. D., Varghese, P., Lehman, D. H. and Livesayet L. L., “Results from the Deep Space 1 Technology Validation Mission”, Acta Astronautica, Vol. 47, pp. 475-487, 2000. https://doi.org/10.1016/S0094-5765(00)00087-4
  14. Raymana, M, D., Fraschettia, T. C.,Raymonda, C., A. and Russellb, C. T.,"Dawn:Amission in development for explorationof main belt asteroids Vesta and Ceres",Acta Astronautica, Vol. 58, pp. 605-616, 2006. https://doi.org/10.1016/j.actaastro.2006.01.014
  15. Kawaguchi, J., Kuninaka, H., Fujiwara,A. and Uesugi, T, "MUSES-C, Its launch andearly orbit operations", Acta Astronautica,Vol.59, pp. 669-678, 2006. https://doi.org/10.1016/j.actaastro.2005.07.002
  16. King, D. Q., de Grys, K. H., andJankovsky, R., "Multi-Mode Hall ThrusterDevelopement", AIAA paper 2001-3778, 2001.
  17. Fisch, N. J., Raitses, Y., Dorf, L. A. andLitvak, A. A.,"Variable Operation of HallThruster with Multiple Segmented Electrodes",Journal of Applied Physics, Vol. 89, pp.2040-2046, 2001. https://doi.org/10.1063/1.1337919
  18. Goebel, D. M., Brophy, J. R., Polk, J. E.,Katz, I. and Anderson, J., "Variable SpecificImpulse High Power Ion Thruster", AIAA paper2005-4246, 2005.
  19. Chang-Diaz, F. R., Squire, J. P., Glover,T., Petro, A. J., Bering, E. A., Baity, F. W,Goulding, R. H., Carter, M. D., Bengtson, R. D.and Breizman, B. N., "The VASIMR Engine:Project Status and Recent Accomplishments",Presented at the 42th Aerospace SciencesMeeting and Exhibit, Reno, NV, Jan. 5-8, 2004.
  20. Bering, E. A., Chang-Diaz, F. R., Squire, J. P., Brukardt, M., Glover, T. W., Bengtson, R. D., Jacobson, V. T., McCaskill, G. E. and Cassady, L., "Electromagnetic Ion Cyclotron Resonance Heating in the VASIMR", Advance in Space Research, Vol. 42, pp. 192-205, 2008. https://doi.org/10.1016/j.asr.2007.09.034
  21. Kluever, C. A., “Geostationary Orbit Transfers Using Solar Electric Propulsion with Specific Impulse Modulation”, Journal of Spacecraft and Rockets, Vol. 41, pp. 461-466, 2004. https://doi.org/10.2514/1.10939
  22. Casalino, L. and Colasurdo, G.,"Improved Edelbaum’s Approach to OptimizeLow Earth/Geostationary Orbits Low-ThrustTransfers", Journal of Guidance, Control, andDynamics, Vol. 30, pp. 1504-1510, 2007. https://doi.org/10.2514/1.28694
  23. Casalino, L. and Colasurdo, G., "Optimizationof Variable-Specific-Impulse Interplanetary Trajectories",Journal of Guidance, Control, and Dynamics,Vol. 27, pp. 678-684, 2004. https://doi.org/10.2514/1.11159
  24. Chang-Diaz, F. R., Hsu, M. M., Braden,E., Johnson, IL. and Yang, T. F., “Rapid MarsTransits with Exhaust-Modulated PlasmaPropulsion”, NASA Technical Paper 3539, 1995.
  25. Vadali, S. R., Nah, R., Braden, E. andJohnson, IL., “Fuel-Optimal Planer Earth-MarsTrajectories Using Low-Thrust Exhaust-ModulatedPropulsion”, Journal of Guidance, Control,Dynamics, Vol. 23, pp. 476-482, 2000. https://doi.org/10.2514/2.4553
  26. Nah, R. Vadali, S. R., Braden, E. " Fuel -Optimal, Low-Thrust, Three-DimensionalEarth-Mars Trajectories", J. Guidance, Control,and Dynamics, Vol. 24, pp. 1100-1107, 2001. https://doi.org/10.2514/2.4844
  27. Park, S.-Y., Seywald, H., Krizan, S. A.and Stillwagen, F. H., “Mission Design forHuman Outer Planet Exploration (HOPE) usinga Magnetoplasma Spacecraft”, Planetary andSpace Science, Vol. 54. pp. 737-749, 2006. https://doi.org/10.1016/j.pss.2006.04.006
  28. Golan, O. M. and Breakwell, J. V.,"Minimum Fuel Lunar Trajectories for aLow-Thrust Power-Limited Spacecraft",Dynamics and Control, Vol. 4, pp. 383-394,1994. https://doi.org/10.1007/BF01974142
  29. Ranieri, C., and Ocampo, C. A., "IndirectOptimization of Low Earth Orbit to LowLunar Orbit Transfers", AIAA paper 2008-7075,2008.
  30. Song, Y.-J., Park, S.-Y., Choi, K.-H. andSim, E.-S., "A Lunar Cargo Mission DesignStrategy using Variable Low Thrust", Advancesin Space Research, Vol. 43, pp. 1391-1406, 2009. https://doi.org/10.1016/j.asr.2009.01.020
  31. Park, S.-Y. and Mazanek, D. D., "Missionfunctionality for deflecting Earth-crossing asteroids/comets", Journal of Guidance, Controland Dynamics, Vol. 26, pp. 734-742, 2003. https://doi.org/10.2514/2.5128
  32. Park, S.-Y. and Mazanek, D. D.,"Deflection of Earth-crossing asteroids/cometsusing rendezvous spacecraft and laser ablation",Journal of Astronautical Sciences, Vol. 53,pp. 21-37, 2005.
  33. Song, Y.-J., Park, S.-Y., and Choi, K.-H.,“Optimal Deflection of Earth-Crossing Objectsusing a Power Limited Spacecraft,” 17thAAS/AIAA Space Flight Mechanics Meeting,Sedona, Arizona, Paper AAS 07-147, 2007.
  34. Park, S.-Y. and Choi, K-H., "Optimallow-thrust intercept/rendezvous trajectories toEarth-crossing objects", Journal of Guidance,Control and Dynamics, Vol. 28, pp. 1049-1055,2005. https://doi.org/10.2514/1.10895
  35. 이동헌, 방효충, “저추력기를 이용한 연로최적의 지구 탈출 궤적 설계 연구”, 한국항공우주학회지, 제35권 제7호, pp. 647-654, 2007.
  36. 이동헌, 최윤혁, 방효충, “2차원의 달 진입 최적 궤적 설계”, 한국항공우주학회 추계학술 발 표 논문집, KSAS08-2946, 2008.
  37. 송영주, 박상영, 최규홍, 심은섭, “등저추력을 이용한 최적의 달탐사 비행궤적 설계”, 한국항공우주학회 추계학술 발표회 논문집, KSAS08-2944, 2008.
  38. Boden, D. G. and Hoffman, S., J., OrbitSeletion and Astrodyanmcis, in Larson, W. J.and Pranke, L., K. (eds.) Human Spaceflight:Mission Analysis and Design, McGraw-Hill, NewYork, pp. 244-255, 1999.
  39. Betts, J. T., Practical Method for OptimalControl Using Nonlinear Programming, SIAM,Philadelphia, pp. 147-149, 2001.
  40. The Boeing Company, "SOCS Release6.4", M&CT-TECH-01-014, 2005.
  41. Lozier, D., Galal, K., Folta, D., andBeckman, M., "Lunar Prospector MissionDesign and Trajectory Support", AAS 98-323,pp. 297–311, 1998.
  42. Tooley, C., "Lunar Reconnaissance OrbiterProject Overview & Status", NASA Goddard SpaceFlight Center, http://lunar.gsfc.nasa.gov/301.286.1158,2006.
  43. Shannon, J., "The Clementine Satellite",Energy and Technology Review, June 1994.
  44. Seywald, H. Roithmayr, C. M.,Troutman, P. A. and Park, S.-Y. “Fuel-OptimalTransfers Between Coplanar Circular OrbitsUsing Variable-Specific-Impulse Engines”,Journal of Guidance, Control, and Dynamics,Vol. 28, pp. 795-800, 2005. https://doi.org/10.2514/1.7257
  45. La Mantia, M., Casalino, L. "Indirectoptimization of low-thrust capture trajectories",Journal of Guidance, Control, and Dynamics,Vol. 29, pp. 1011-1014, 2006. https://doi.org/10.2514/1.18986

Cited by

  1. Trans Lunar Injection (TLI) Maneuver Design and Analysis using Finite Thrust vol.38, pp.10, 2010, https://doi.org/10.5139/JKSAS.2010.38.10.998
  2. Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture vol.31, pp.1, 2014, https://doi.org/10.5140/JASS.2014.31.1.51
  3. Lunar CubeSat Impact Trajectory Characteristics as a Function of Its Release Conditions vol.2015, 2015, https://doi.org/10.1155/2015/681901
  4. Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis vol.27, pp.2, 2010, https://doi.org/10.5140/JASS.2010.27.2.097
  5. Ground Contact Analysis for Korea's Fictitious Lunar Orbiter Mission vol.30, pp.4, 2013, https://doi.org/10.5140/JASS.2013.30.4.255
  6. A Study on Optimal Earth-Moon Transfer Orbit Design Using Mixed Impulsive and Continuous Thrust vol.38, pp.7, 2010, https://doi.org/10.5139/JKSAS.2010.38.7.684
  7. Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust vol.28, pp.3, 2011, https://doi.org/10.5140/JASS.2011.28.3.203