DOI QR코드

DOI QR Code

Influence of Noise on Chaotic Time Series

카오스 시계열에 대한 잡음의 영향

  • Choi, Min-Ho (dept. of civil & architecture engrg., kyunghee univ.) ;
  • Lee, Eun-Tae (dept. of civil & architecture engrg., kyunghee univ.) ;
  • Kim, Hung-Soo (dept. of civil engrg., Inha univ.)
  • 최민호 (경희대학교 토목건축공학부) ;
  • 이은태 (경희대학교 토목건축공학부) ;
  • 김형수 (인하대학교 토목공학과)
  • Published : 2009.04.30

Abstract

The purpose of this paper is to investigate the influence of noise on chaotic time series. We used two time series of Lorenz system and of Great Salt Lake's volume data which are well known as chaotic systems. This study investigated the attractors, correlation dimensions, and Close Returns Plots and Close Returns Histograms of two time series to investigate the influence of noise as increasing noise level. We performed Chi-square test to the relative frequency of Close Returns Histogram from Close Returns Plot for the investigation of stochastic process of chaotic time series as increasing noise level of time series. As the results, two time series were changed from chaotic to stochastic series as noise level is increased. Finally, we analyzed the effect of noise cancellation by using Simple Moving Average method. The results of applications of Simple Moving Average method to Lorenz and GSL time series showed that we could effectively cancel the noise. Then we could confirm the applicability of Simple Moving Average method to cancel the noise for the hydrologic time series having chaotic characteristics.

본 연구에서는 카오스 특성을 보이는 수문시계열에 대한 잡음의 영향을 검토하기 위하여 카오스 특성을 보이는 자료로 알려져 있는 Lorenz 시계열과 미국 Great Salt Lake의 용적 자료계열을 이용하였다. 잡음의 영향을 고려하기 위한 방법으로 잡음의 비율을 증가시키면서 끌개, 상관차원, Close Returns Plot의 변화 특성을 살펴보면서 카오스의 특성이 어떻게 변화하는지를 검토하였다. 또한 Close Returns Plot의 점들의 도수에 의해 표현되는 Close Returns Histogram의 상대도수에 대하여 $X^2$ 검정을 수행하였다. 그 결과, Lorenz 시계열과 GSL 용적 자료계열 모두 잡음의 비율이 증가함에 따라 카오스 특성이 사라지고 선형 추계학적인 과정의 자료로 변화됨을 확인하였다. 또한 단순 이동평균 방법에 의하여 Lorenz 시계열과 GSL 용적 자료계열에 대한 잡음의 제거 효과가 있는지에 대하여 검토한 결과 단순 이동평균 방법으로 자료의 잡음을 효과적으로 제거할 수 있었고, 카오스 특성을 보이는 실측 수문시계열에 적용성이 있음을 확인할 수 있었다.

Keywords

References

  1. 김형수, 윤용남, (1996.) '카오스의 위상학적 견지: (II) 독립성과 잡음제거', 대한토목학회논문집, 대한토목학회, 제16권, 제II-5호, pp.453-459
  2. 오창열, 진영훈, 박성천, 정우철. (2006) '하천의 일TOC 시계열 자료의 비선형 동역학적 거동 분석' 한국수자원학회 2006년도 학술발표회 논문집, 한국수자원학회, pp.1032-1036
  3. Bouzata S., Wioa H.S., and Mindlin G.B., (2004) 'Characterization of spatiotemporal chaos in an inhomogeneous active medium', Physica D, Vol. 199, pp. 185-193 https://doi.org/10.1016/j.physd.2004.08.013
  4. Demitre S., (2008) 'Effect of noise on fractal structure', Chaos, Solitons and Fractals, Vol 38, pp. 921-924 https://doi.org/10.1016/j.chaos.2007.01.031
  5. Gassberger P. and Procaccia I., (1983) 'Characterization of Strange Attractors'. Physical Review Letters, Vol. 50, pp. 345-349
  6. Gilmore C.G., (1993). 'A New Test for chaos', Journal of Economic Behavior and Organization, Vol. 22. pp. 209-237 https://doi.org/10.1016/0167-2681(93)90064-V
  7. Hou X., (1993) Chaotic Data Analyses, Ph. D. Dissertation, Drexel University, USA
  8. Kim H.S., (1997) Applicability of chaotic system in hydrologic time series. Ph.D. Dissertation, Colorado State Univ., Fort Collins, Colorado, USA
  9. Kim H.S., Eykholt R., and Salas J.D., (1998) 'Delay time window and plateau onset of the correlation dimension for small data sets', Physical Review E, Vol. 58, No. 5, pp. 5676-5682 https://doi.org/10.1103/PhysRevE.58.5676
  10. Kim H.S., Eykholt R., and Salas J.D., (1999) 'Nonlinear dynamics, delay times, and embedding windows', Physica D 127, pp. 48-60 https://doi.org/10.1016/S0167-2789(98)00240-1
  11. Kim H.S., Yoon Y.N., Kim J.H., and Kim J.H. (2001) 'Searching for strange attractor in wastewater flow', Stochastic Environmental Research and Risk Assessment, Vol. 15, No. 5, pp. 399-413 https://doi.org/10.1007/s004770100078
  12. Kim H.S., Kang D.S., and Kim J.H. (2003) 'The BDS statistic and residual test', Stochastic Environmental Research and Risk Assessment, Vol.17, pp. 104-115 https://doi.org/10.1007/s00477-002-0118-0
  13. Mckenzie M.D., (2001) 'Chaotic behavior in national stock market indices new evidence from the close returns test', Global Finance Journal, Vol. 12, pp. 35-53 https://doi.org/10.1016/S1044-0283(01)00024-2
  14. Mindlin G. and Gilmore R., (1992) 'Topological analysis and synthesis of chaotic time series', Physica D, Vol. 58, pp. 229-242 https://doi.org/10.1016/0167-2789(92)90111-Y
  15. Packard N.H., Crutchfield J.P., Farmer J.D., and Shaw R.S., (1980) 'Geometry from a time series', Physical Review Letters, Vol. 45, No. 9, 712-716 https://doi.org/10.1103/PhysRevLett.45.712
  16. Rodriguez-Iturbe I., Power B.F.D., Sharifi M.B. and Georgakakos K.P., (1989). 'Chaos in Rainfall', Water resources Research, Vol.25, No.7, pp.1667-1675 https://doi.org/10.1029/WR025i007p01667
  17. Salas J.D., Smith R.A., Tabios III G.Q. and Heo J.H., (1993) 'Statistical Computer Techniques in Hydrology and Water Resources', Unpublished text book in CE 622. Colorado State University
  18. Sangoyormi T.B., Lall U, and Abarbanel H.D.I., (l996) 'Nonlinear dynamics of the Great Salt Lake: dimension estimation', Water Resources Research. Vol. 32, No. 1. pp. 149-159 https://doi.org/10.1029/95WR02872
  19. Schreiber T. (1993) 'Extremely simple nonlinear noise-reduction method', Physical Review E, Vol. 47, No. 4, pp. 2041-2044 https://doi.org/10.1103/PhysRevE.47.2401
  20. Sivakumar B., Berndtsson R, Persson M, and Uvo C.B., (2005) 'A multi-variable time series phase-space reconstruction approach to investigation of chaos in hydrological process', International Journal of Civil and Environmental Engineering, Vol. 1, No. 1, pp. 35-51
  21. Sivakumar B., Jayawardena, A.W., and Li, W.K. (2007) 'Hydrologic complexity and classification: a simple data reconstruction approach', Hydological Processes, Vol. 21, pp. 2713-2728 https://doi.org/10.1002/hyp.6362
  22. Wilcox B.P., Seyfried M.S., and Matison T.H., (1991) 'Searching for Chaotic Dynamics in Snow melt Runoff', Water resources Research. Vol. 27, No. 6, pp. 1005-1010 https://doi.org/10.1029/91WR00225
  23. Witold O. (2008) 'The new method of measuring the effects of noise reduction in chaotic data' Chaos, Solitons and Fractals 38, pp. 1355-1368 https://doi.org/10.1016/j.chaos.2007.06.059