Characterization of Antimicrobial Substance Produced by Lactobacillus paraplantarum KNUC25 Isolated from Kimchi

김치로부터 분리된 Lactobacillus paraplantarum KNUC25가 만드는 항균 물질의 특성

  • Kim, Ma-Rie (Department of Microbiology, Kyungpook National University) ;
  • Lee, Su-Jin (Department of Microbiology, Kyungpook National University) ;
  • Seul, Keyung-Jo (Department of Microbiology, Kyungpook National University) ;
  • Park, Yu-Mi (Department of Microbiology, Kyungpook National University) ;
  • Ghim, Sa-Youl (Department of Microbiology, Kyungpook National University)
  • 김마리 (경북대학교 자연과학대학 미생물학과) ;
  • 이수진 (경북대학교 자연과학대학 미생물학과) ;
  • 설경조 (경북대학교 자연과학대학 미생물학과) ;
  • 박유미 (경북대학교 자연과학대학 미생물학과) ;
  • 김사열 (경북대학교 자연과학대학 미생물학과)
  • Published : 2009.03.28

Abstract

The KNUC25 strain isolated from over-fermented whole Chinese cabbage kimchi was examined for its physiological characteristics using API 50 CHL system assay and identified as Lactobacillus paraplantarum by analysis of whole-cell protein SDS-PAGE pattern assay and similarity of 16S rDNA sequence. L. paraplantarum KNUC25 had a broad antimicrobial activity spectrum from Gram positive to Gram negative bacteria. Scanning electron micrograph analysis showed that KNUC25 might attack to cell surface of indicator cells and destruction can lead to inhibition of the cell growth. The antimicrobial substance of the KNUC25 strain was stable to various degrading enzymes and at high temperature and not a plasmid-born matter. Resistance to proteolytic enzymes showed that an antimicrobial activity of KNUC25 might not be caused by proteinous substance. Maximum production of antimicrobial substance was the exponential growth phase at $30^{\circ}C$.

숙성 정도가 오래된 김장 배추 김치에서 분리되어 16S rDNA 염기 서열 분석을 통해 부분 동정된 KNUC25 분리 균주를 단백질 전기 영동 패턴과 생리적 특징 그리고 염기 서열의 유사성을 비교하여 Lactobacillus paraplantarum로 동정하였다. L. paraplantarum KNUC25의 농축 상등액은 그람 양성균과 음성균에 넓은 범위의 항균 활성을 나타냈다. 전자 현미경을 통해 KNUC25가 만들어내는 항균 물질은 세균의 표면에 작용하여 생육을 억제하는 것으로 확인되었다. 항균 활성 물질을 생산하는 최적 온도는 섭씨 30도이고, 높은 온도에서도 항균 활성을 보였으며 단백질 분해 효소에 안정하며 비단백질성 항균 물질일 가능성을 보여주었다.

Keywords

References

  1. Ahn, D. K., T. W. Han., H. Y. Shin, I. N. Jin, and S. Y. Ghim. 2003. Diversity and antibacterial activity of lactic acid bacteria isolated from Kimchi. Kor. J. Microbiol. Biotechnol. 31: 191-196
  2. Atrih, A., N. Rekhif, A. J. Moir, A. Lebrihi, and G Lefebvre. 2001. Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bactenocm produced by Lactobacillus plantarum C19. lnt. J. Food Microbiol. 68: 93-104 https://doi.org/10.1016/S0168-1605(01)00482-2
  3. Axelsson L. and A. Holck. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177: 2125-2137
  4. Boyd, M. A., M. A. Antonio, and S. L. Hillier. 2005. Comparison of API 50 CH strips to whole-chromosomal DNA probes for identification of Lactobacillus species. J. Clin. Microbiol. 43: 5309-5311 https://doi.org/10.1128/JCM.43.10.5309-5311.2005
  5. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Choi, E. M., Y. H. Kirn, S. J. Park, Y. I. Kim, Y. M. Ha, and S. K. Kim. 2004. Characterization of bacteriocin, lacticin YH-10, produced by Lactococcus lactis subsp. lactis YH-10 isolated from Kimchi. J. Life Sci. 14: 83-688 https://doi.org/10.5352/JLS.2004.14.4.683
  7. Cintas, L. M., P. Casaus, C. Herranz, L. S. Havarstein, H. Holo, P. E. Hernandez, and I. F. Nes. 2000. Biochernical and genetic evidence that Enterococcus faeciumL50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. J. Bacteriol. 182: 6806-6814 https://doi.org/10.1128/JB.182.23.6806-6814.2000
  8. Corsetti, A., M. Gobbetti, J. Rossi, and P. Damniani. 1998. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl. Microbiol. Biotechnol. 50: 253-256 https://doi.org/10.1007/s002530051285
  9. Cotter, P. D., C. Hill, and R. P. Ross. 2005. Bacteriocins: developing innate immunity for food. Nat. Reν Microbiol. 3: 777-788 https://doi.org/10.1038/nrmicro1273
  10. Curk, M. C., J. C. Hubert, and F. Bringel. 1996. Lactobacillus paraplantarum sp. now., a new species related to Lactobacillus plantarum. lnt. J. Syst. Bacteriol. 46: 595-598 https://doi.org/10.1099/00207713-46-2-595
  11. De Man, J. C., M. Rogosa, and M. E. Sharpe. 1960. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23: 130-135 https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  12. Elliott, J. A. and R. R. Facklam. 1993. Identification of Leuconostoc spp. by analysis of soluble whole-cell protein patterns. J. Clin. Microbiol. 31: 1030-1033
  13. Hahn, Y. S. and J. Y. Oh. 1999. Dextransucrase activity of Leuconostoc sp. strains isolated from Kirnchi. Kor. J. Appl. Microbiol. Biotechnol. 27: 86-89
  14. Han, T. W. 2005. Microbiological control for sanitary safety of commercial Kimchi. Master Degree Thesis, Kyungpook National University, Daegu, Korea
  15. Holo, H., O. Nilssen, and I. F. Nes. 1991 Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization df the protein and its gene. J. Bacteriol. 173: 3879-3887
  16. Hugenholtz, J., W. Sybesma, M. N. Groot, W. Wisselink, V. Ladero, K. Birgess, D. van Sinderen, J. C. Piard, G. Eggink, E. J. Srnid, G. Savoy, F. Sesma, T. Jansen, P. Hols, and M. Kleerebezem. 2002. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie van Leeuwenhoek 82: 217-235 https://doi.org/10.1023/A:1020608304886
  17. Kim, T. W., S. H. Jung, J. Y. Lee, S. K. Choi, S. H. Park, J. S. Jo, and H. Y. Kim 2003. Identification of lactic acid bacteria in Kimchi using SDS-PAGE profiles of whole cell proteins. J. Microbiol. Biotechnol. 13: 119-124
  18. Kleerebezem, M. and J. Hugenholtz. 2003. Metabolic pathway engineering in lactic acid bacteria. Curr. Opin. Biotechnol. 14: 232-237 https://doi.org/10.1016/S0958-1669(03)00033-8
  19. Laverrnicocca, P., F. Valerio, A. Evidente, S. Lazzaroni, A. Corsetti, and M. Gobbetti. 2000. Purification and characterization of novel antifungal compounds by sourdough Lactobacillus plantarum 21B. Appl. Environ. Microbiol. 66: 4084-4090 https://doi.org/10.1128/AEM.66.9.4084-4090.2000
  20. Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from Kimchi. J. Microbiol. Biotechnol. 15: 428-433
  21. Lee, J. Y., Y. S. Park, Y. S. Kim, and D. H. Shin. 2002. Antirnicrobial characteristics of metabolites of lactic acid bacteria isolated from feces of newborn baby and from Dongchirni. Kor. J. Food Sci. Technol. 34: 472-479
  22. Lee, K. H., J. Y. Park, S. J. Jeong, G. H. Kwon, H. J. Lee, H. C. Chang, D. K. Chung, J. H. Lee, and J. H. Kim. 2007. Characterization of paraplantaricin C7, a novel bacteriocin produced by Lactobacillus paraplantarum C7 isolated from Kimchi J. Microbiol. Biotechnol. 17: 287-296
  23. Lee, K. S., Y. S. Shin, and C. H. Lee. 1998. Acid tolerance of Lactobacillus brevis isolated from Kirnchi. Kor. J. Food Sci. Technol. 30: 1399-1403
  24. Lee, S. H., Y. Park, and W. J. Choi. 1999. Changes ofthe lactic acid bacteria and selective inhibitory substances against homo and hetero lactic acid bacteria isolated from Kimchi. Kor. J. Appl. Mlcrobiol. Biotechnol. 27. 410-415
  25. Messens, W. and V. L. De. 2002. Inhibitory substances produced by Latobacillus isolated from sourdoughs - a review. lnt. J. Food Microbiol. 72: 31-43 https://doi.org/10.1016/S0168-1605(01)00611-0
  26. Narvhus, J. A., K. Osteraas, T. Mutukurnira, and R. K. Abrahamsen. 1998. Production of fermented rnilk using a malty compound producing strain of Lactococcus lactis subsp. lactis biovar. diacetylactis isolatwd from Zimbabwean naturally fermented milk. Int. J. Food Microbiol. 41: 73-80 https://doi.org/10.1016/S0168-1605(98)00036-1
  27. O'Sullivan, D. J. and T. R. Klaenhammer. 1993. Rapid miniprep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl. Environ. Microbiol. 59: 2730-2733
  28. Poolman, B. 2002. Transporters and their roles in LAB cell physiologt. Antonie van Leeuwenhoek 82: 147-164 https://doi.org/10.1023/A:1020658831293
  29. Rince, A., A Dufour, P. Uguen, J.-P. Le Pennec, and D. Haras. 1997. Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity. Appl. Environ. Microbiol. 63: 4252-4260
  30. Schillinger, U. and W. H. Holzapfel. 1996. Guidelines for manuscnpts 얘 bacteriocins of lactic acid bacteria. Int. J. Food Microbiol. 33; 3-5
  31. So, M. H. and Y. B. Kim. 1995. Idenljfication of psychrotrophic lactic aqid bacteria isolated from Kimchi. Kor. J. Food Sci. Technol. 27: 495-505
  32. Tagg, J, R. and A. R. McGiven. 1971. Assay system for bacteriocins, Appl. Microbiol, 21: 943