DOI QR코드

DOI QR Code

Exact Constrained Optimal Design

정확최적실험계획법

  • 김영일 (중앙대학교 정보시스템학과)
  • Published : 2009.03.30

Abstract

It is very rare to conduct an experimental design with a single objective in mind. since we have uncertainties in model and its assumptions. Basically we have three approaches in literature to handle this problem, the mini-max, compound, constrained experimental design. Since Cook and Wong (1994) announced the equivalence between the compound and the constrained design, many constrained experimental design approaches have adopted the approximate design algorithm of compound experimental design. In this paper we attempt to modify the row-exchange algorithm under exact experimental design setting, not approximate experimental design one. This attempt will provide more realistic design setting for the field experiment. In this process we proposed another criterion on how to set the constrained experimental design. A graph to show the general issue of infeasibility, which occurs quite often in constrained experimental design, is suggested.

실험을 시행하는 경우 모형과 수반하는 가정들이 가지고 있는 불확실성 때문에 하나의 목적만 가지고 실험을 수행하는 경우는 거의 없다. 문헌에서는 이러한 문제를 해결하기 위한 3가지 방법이 존재한다. 최대-최소법, 복합실험법 그리고 제약실험법이 그것이다. 복합실험법과 제약실험법의 동격성이 Cook과 Wong(1994)의 논문에 의해 증명된 이래로 많은 수많은 제약실험법의 방법들이 제안되었지만 모두 복합실험법의 근사알고리즘에 기초하였다. 따라서 본 논문에서는 제약실험법하에서의 정확알고리즘을 제안하여 실제적인 실험환경하에서 도움을 주고자 하였다. 이러한 과정에서 본 논문에서는 다른 형태의 제약실험법의 형태를 제안하였으며 부산물로 비 타당성의 문제를 볼 수 있는 그림을 첨부하였다.

Keywords

References

  1. Box, G. E .P. and Draper, N. R. (1975). Robust design, Biometrika, 62, 347-352 https://doi.org/10.1093/biomet/62.2.347
  2. Cook, R. D. and Fedorov, V. V. (1995). Constrained optimization of experimental design, Statistics, 26, 129-178 https://doi.org/10.1080/02331889508802474
  3. Cook, R. D. and Nachtsheim, C. J. (1980). A comparison of algorithms for constructing exact D-optimal designs, Technometrics, 22, 315-324 https://doi.org/10.2307/1268315
  4. Cook, R. D. and Wong, W. K. (1994). On the equivalence of constrained and compound optimal designs, Journal of the American Statistical Association, 89, 687-692 https://doi.org/10.2307/2290872
  5. Fedorov, V. V. (1972). Theory of Optimal Experiments, Academic Press, New York
  6. Gaffke, N. and Krafft, O. (1982). Exact D-optimum designs for quadratic regression, Journal of Royal Statistical Society, Series B, 44, 394-397
  7. Huang, Y. C. and Wong, W. K. (1998). Sequential construction of multiple-objective optimal designs, Biometrics, 54, 1388-1397 https://doi.org/10.2307/2533665
  8. Johnson, M. E. and Nachtsheim, C. J. (1983). Some guidelines for constructing exact D-optimal designs on convex design spaces, Technometrics, 25, 271-277 https://doi.org/10.2307/1268612
  9. Kahng, M. W. and Kim, Y. I. (2002). Multiple constrained optimal experimental design, The Korean Communications in Statistics, 9, 619-627 https://doi.org/10.5351/CKSS.2002.9.3.619
  10. Kiefer, J. (1971). The Role of Symmetry and Approximation in Exact Design Optimality, In Statistical Decision Theory and Related Topics, Academic Press, New York
  11. Kiefer, J. (1974). General equivalence theory for optimal designs (approximate theory), The Annals of Statistics, 2, 849-879 https://doi.org/10.1214/aos/1176342810
  12. Kim, Y. and Lim, Y. B. (2007). Hybrid approach when multiple objectives exist, The Korean Communica-tions in Statistics, 14, 531-540 https://doi.org/10.5351/CKSS.2007.14.3.531
  13. Lauter, E. (1974). Experimental planning in a class of models, Mathematische Operationsforschung und Statistik, 5, 673-708
  14. Lee, C. M. S. (1987). Constrained optimal designs for regression models, Communications in Statistics, Part A- Theory and Methods, 16, 765-783 https://doi.org/10.1080/03610928708829401
  15. Lim, Y. B. (1991). Exact $D_{\delta}$-efficient designs for quadratic response surface model, Journal of the Korean Statistical Society, 20, 156-161
  16. Meyer, R. K. and Nachtsheim, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal experimental designs, Technometrics, 37, 60-69 https://doi.org/10.2307/1269153
  17. Mikulecka, J. (1983). On hybrid experimental designs, Kybernetika, 19, 1-14
  18. Mitchell, T. J. (1974). An algorithm for the construction of D-optimal experimental designs, Technometrics, 16, 203-210 https://doi.org/10.2307/1267940
  19. Pesotchinsky, L. L. (1975). D-optimum and quasi-D-optimum second order designs on a cube, Biometrika, 62, 335-340 https://doi.org/10.1093/biomet/62.2.335
  20. Stigler, S. M. (1971). Optimal experimental design for polynomial regression, Journal of the American Statistical Association, 66, 311-318 https://doi.org/10.2307/2283928
  21. Wynn, H. P. (1972). Results in the theory and construction of D-optimum experimental designs, Journal of Royal Statistical Society, Series B, 34, 133-147