DOI QR코드

DOI QR Code

Characterization of Transgenic Tall Fescue Plants Overexpressing NDP Kinase Gene in Response to Cold Stress

NDP Kinase 유전자를 과발현시킨 형질전환 톨 페스큐 식물체의 저온 스트레스에 대한 내성 특성

  • Lee, Sang-Hoon (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Ki-Won (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Kyung-Hee (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kwak, Sang-Soo (Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Lee, Byung-Hyun (Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 이상훈 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 이기원 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 김경희 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 윤대진 (경상대학교 응용생명과학부, 농업생명과학연구원) ;
  • 곽상수 (한국생명공학연구원) ;
  • 이병현 (경상대학교 응용생명과학부, 농업생명과학연구원)
  • Published : 2009.12.31

Abstract

Oxidative stress is the main limiting factor in crop productivity. To solve global environmental problems using the plant biotechnology, we have developed on the oxidative stress-tolerant transgenic tall fescue plants via Agrobacterium-mediated genetic transformation method. In order to develop transgenic tall fescue (Festuca arundinacea Schreb.) plants with enhanced tolerance to multiple environmental stresses, nucleotide diphosphate kinase gene under the control of CaMV35S promoter were introduced into genome of tall fescue plants. Proteomic analysis revealed that transgenic tall fescue not only accumulated NDP kinase 2 protein in their cells, but also induced several other antioxindative enzyme-related proteins. When leaf discs of transgenic plants were subjected to cold stress, they showed approximately 30% less damage than wild-type plants. In addition, transgenic tall fescue plants showed normal growth when transgenic plants were subjected to $4^{\circ}C$ for 3 days treatments. These results suggest that transgene is important in ROS scavenging by induction of antioxidative proteins, and could improve abiotic stress tolerance in transgenic tall fescue plants.

저온 스트레스에 대한 내성을 지닌 신품종 톨 페스큐를 개발할 목적으로 CaMV35S 프로모터 하류에 NDP kinase 2 유전자가 항상적으로 발현하도록 제작한 벡터를 Agrobacterium법을 이용하여 톨 페스큐에 도입하였다. Hygromycin이 첨가된 선발배지에서 내성을 나타내며 재분화된 형질전환 식물체를 pot로 이식하여 기내순화 시킨 후, Southern blot 분석을 실시하여 본 결과, NDP kinase 2 유전자가 형질전환 식물체의 genome에 정상적으로 도입되었음을 확인하였다. 프로테옴 분석을 통하여 도입유전자의 조절을 받는 항산화관련 유전자들의 발현이 유도되었음을 확인 할 수 있었다. 형질전환 식물체 잎 절편을 산화스트레스 중의 하나인 저온 스트레스를 처리하여 세포의 손상 정도를 조사한 결과, 비형질전환체에 비해 형질전환체는 강한 내성을 나타내었다. 또한 유식물체 수준에서 저온 스트레스를 처리하여 내성을 비교한 결과, 비형질전환체에 비해 형질전환체는 높은 내성을 나타내었다. 이 형질전환 톨페스큐는 산화스트레스 내성 품종개발을 위한 소재로 활용 될 수 있을 것이다.

Keywords

References

  1. Ahsan, N., D.-G. Lee, I Alam, P.J. Kim, J.J Lee, Y.-O. Ahn, S.-S. Kwak, I.-J. Lee, J.D. Bahk, K.Y. Kang, J Renaut, S Komatsu and B-H Lee. 2008. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stres. Proteomics 8: 3561 3576 https://doi.org/10.1002/pmic.200701189
  2. Allen, R.D., R.P. Webb and S.A. Schake. 1997. Use of transgenic plants to study antioxidant defenses. Free Radical Biol. Med. 23:473-479 https://doi.org/10.1016/S0891-5849(97)00107-X
  3. Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol.. 50:601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  4. Buckner, R.C., J.B., Powell and R.V. Frakes. 1979. Historical development. In: Buckner RC, Bush LP(eds) Tall Fescue. Agronomy 20:1-8
  5. Dong, S. and R. Qu. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Sci. 168:1453 1458 https://doi.org/10.1016/j.plantsci.2005.01.008
  6. Foyer, C.H., P. Descourvierse, and K.J. Kunert. 1994. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell Environ. 17:507-523 https://doi.org/10.1111/j.1365-3040.1994.tb00146.x
  7. Kim, Y.H., S. Lim, K.S. Yang, C.Y. Kim, D. S.Y. Kwon, H.S. Lee, X. Wang, Z. Zhou, Ma, D.J. Yun and S.S. Kwak. 2009. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants. Mol Breeding 24:233-244 https://doi.org/10.1007/s11032-009-9286-7
  8. Lee, S.-H., D.-G. Lee, H.-S. Woo, K.-W. Lee, D.-H. Kim, SS. Kwak, J.-S. Kim, H.G. Kim, N. Ahsan, MS. Choi, J.K. Yang and B.-H. Lee. 2006. Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seedderived callus tissues. Plant Sci. 171:408-414
  9. Lee, S.-H., D.-G. Lee, H.-S Woo, B.-H. Lee. 2004. Development of transgenic tall fescue plants from mature seed-derive callus via Agrobacteriummediated transformation. Asian-Aust J Anim Sci. 17:1390 1394 https://doi.org/10.5713/ajas.2004.1390
  10. Moon, H., Lee, B., Choi, G., Shin, D., Prasad, D.T., Lee, O., Kwak, S.S., Kim, D.H., Nam, J., Bahk, J., Hong, J.C., Lee, S.Y., Cho, M.J., Lim, C.O. and Yun, D.J. 2003. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. USA 100:358-363 https://doi.org/10.1073/pnas.252641899
  11. Murashige T. and F. Skoog. 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  12. Murray, M.G. and P.F. Tompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8:4321-4325 https://doi.org/10.1093/nar/8.19.4321
  13. Noctor, G. and C.H. Foyer. 1998. Ascorbate and glutathine: keeping active oxygen under control Annu Rev Plant Physiol Plant Mol Biol. 49:249-279 https://doi.org/10.1146/annurev.arplant.49.1.249
  14. Spangenberg, G., Z.Y. Wang and I. Potrykus. 1998. Biotechnology in forage and turf grass improvement. In: Frankel et al (Eds), Monographs on theoretical and applied genetics, Vol. 23, Springer Verlag, Heidelberg, p. 192-211
  15. Wang, Z.-Y. and Y. Ge. 2005 Agrobacteriummediated high efficiency transformation of tall fescue (Festuca arundinacea Schreb.). J. Plant Physiol. 162:103-113 https://doi.org/10.1016/j.jplph.2004.07.009

Cited by

  1. Korean plant proteomics: pioneers in plant stress physiology vol.38, pp.2, 2011, https://doi.org/10.5010/JPB.2011.38.2.151