DOI QR코드

DOI QR Code

Physiological Effects of Casein-derived Bioactive Peptides

카제인 유래 생리활성 Peptide의 체내 효과

  • Jung, Ho-Jung (Department of Food Science and Technology, Sejong University) ;
  • Min, Bock-Ki (Department of Food Science and Technology, Sejong University) ;
  • Kwak, Hae-Soo (Department of Food Science and Technology, Sejong University)
  • Published : 2009.12.31

Abstract

Casein is considered to be the main source of protein in milk; therefore, many studies have been conducted to identify casein-derived bioactive peptides and their physiological effects. Casein is inactive within the parent protein but can be liberated by various proteases and enzymatic hydrolysis during microbial fermentation and gastrointestinal digestion. Once absorbed, casein exhibits different bioavailabilities in the body. Specifically, casein-derived peptides function as angiotensin converting enzyme (ACE) inhibitor in the cardiovascular system; thus, they are expected to reduce and prevent hypertension. Additionally, casein-derived peptides behave as opioid-like peptides in the nervous system, which impacts relaxation. These peptides are also expected to modulate various aspects of immune functions. Finally, caseinophosphopeptide (CPP) and glycomacropeptide (GMP) may exhibit a number of nutritional effects such as the absorption of calcium, iron or zinc. Many studies have been conducted to evaluate casein-derived peptides due to their multifunctional properties and the results of these studies have contributed to the development of a wide variety of functional dairy products. The purpose of this paper was to review the generation of bioactive peptides, their absorption and metabolism, and their specific bioactive effects.

카제인은 우유에서 단백질의 주요 급원으로 알려져 있으며, 이에 따라 카제인 유래 생리활성 펩타이드와 체내 작용에 대한 연구들이 지속적으로 보고되어 왔다. 카제인은 모체단백질 내에서는 불활성을 띄지만 여러 종류의 protease의 작용, 미생물 발효 시 효소적인 가수분해 및 위장에서의 소화를 거치면서 모체단백질에서 방출되어 활성을 띄게 된다. 카제인은 체내에서 흡수된 후 여러 생리활성을 지니게 된다. 먼저 심장혈관계에서 카제인 유래 펩타이드는 ACE 저해활성을 가지므로 고혈압을 예방하는데 도움을 줄 것으로 기대된다. 신경계에서는 opioid 유사물질로서 모르핀과 같은 효과를 나타낸다. 면역계에서는 여러 측면에서 면역기능을 조절한다고 알려져 있으며, 마지막으로 영양계에서는 대표적으로 CPP(caseinophosphopeptide) 및 GMP(glycomacropeptide)가 칼슘, 철과 같은 무기질 흡수에 도움을 준다. 이와 같이 카제인 유래 펩타이드의 다양한 생리활성은 다양한 기능성 유제품에 적용되어왔다. 본고에서는 생리활성 펩타이드의 생성, 흡수 및 흡수기전과 이들의 대표적인 생리활성기능 중 심혈관, 신경, 면역 및 영양에 미치는 영향에 대해 논하였다.

Keywords

References

  1. Aimutis, W. R. (2004) Bioactive properties of milk proteins with particular focus on anticariogenesis. J. Nutr. 134, 989S-995S https://doi.org/10.1093/jn/134.4.989S
  2. Ait-Oukhatar, N., Peres, J. M., Bouhallab, S., Neuville, D., Bureau, F., Bouvard, G., Arhan, P., and Bougle, D. (2002) Bioavailability of caseinophosphopeptide-bound iron. J. Lab. Clin. Med. 140, 290-294 https://doi.org/10.1067/mlc.2002.128146
  3. Andrews, A. T., Williams, R. J. H., Brownsell, V. L., Isgrove, F. H., Jenkins, K., and Kanekanian, A. D. (2006) $\beta$-CN-5P and $\beta$-CN-4P components of bovine milk proteose–peptone: large scale preparation and influence on the growth of cariogenic microorganisms. Food Chem. 96, 234-241 https://doi.org/10.1016/j.foodchem.2005.02.039
  4. Ardo, Y., Lilbæk, H., Kristiansen, K. R., Zakora, M., and Otte, J. (2007) Identification of large phosphopeptides from $\beta$-casein that characteristically accumulate during ripening of the semi-hard cheese Herrg${\aa}$rd. Int. Dairy J. 17, 513-524 https://doi.org/10.1016/j.idairyj.2006.06.027
  5. Ashar, M. N. and Chand, R. (2004) Fermented milk containing ACE-inhibitory peptides reduces blood pressure in middle aged hypertensive subjects. Milchwissenschaft 59, 363-366
  6. Blondelle, S. E. and Lohner, K. (2000) Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55, 74-87 https://doi.org/10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-S
  7. Bruck, W. M., Graverholt, G., and Gibson, G. R. (2003) A two-stage continuous culture system to study the effect of supplemental α-lactalbumin and glycomacropeptide on mixed cultures of human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella serotype Typhimurium. J. Appl. Microbiol. 95, 44-53 https://doi.org/10.1046/j.1365-2672.2003.01959.x
  8. Buikofer, U., Meyer, J., Sieber, R., and Wechsler, D. (2007) Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semihard and soft cheeses. Int. Dairy J. 17, 968-975 https://doi.org/10.1016/j.idairyj.2006.11.003
  9. Clare, D. A. and Swaisgood, H. E. (2000) Bioactive milk peptides: a prospectus. J. Dairy Sci. 83, 1187-1195 https://doi.org/10.3168/jds.S0022-0302(00)74983-6
  10. Cross, M. L., Mortensen, R. R., Kudsk, J., and Gill, H. S. (2002) Dietary intake of Lactobacillus rhamnosus HNOO1 enhances production of both Th1 and Th2 cytokines in antigen- primed mice. Med. Microbiol. Immunol. 191, 49-53 https://doi.org/10.1007/s00430-002-0112-7
  11. del Mar Contreras, M., Carron, R., Montero, M. J., Ramos, M., and Recio, I. (2009) Novel casein-derived peptides with antihypertensive activity. Int. Dairy J. 19, 566-573 https://doi.org/10.1016/j.idairyj.2009.05.004
  12. Dziuba, J., Minkiewicz, P., Nalecz D., and Iwaniak, A. (1999) Database of biologically active peptide sequences. Nahrung. 43, 190-195 https://doi.org/10.1002/(SICI)1521-3803(19990601)43:3<190::AID-FOOD190>3.0.CO;2-A
  13. Erdmann, K., Cheung, B. W., and Schroder, H. (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19, 643-654 https://doi.org/10.1016/j.jnutbio.2007.11.010
  14. Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994) Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563-566 https://doi.org/10.1038/368563a0
  15. Ferranti, P., Traisci, M. V., Picariello, G., Nasi, A., Boschi, V., Siervo, M., Falconi, C., Chianese, L., and Addeo, F. (2004) Casein proteolysis in human milk: tracing the pattern of casein breakdown and the formation of potential bioactive peptides. J. Dairy Res. 71, 74-87 https://doi.org/10.1017/S0022029903006599
  16. FitzGerald, R. J. and Meisel, H. (2000) Milk protein-derived peptide inhibitors of angiotensin-I-converting enzyme. Br. J. Nutr. 84, 33-37 https://doi.org/10.1017/S0007114500002221
  17. FitzGerald, R. J. and Murray, B. A. (2006) Bioactive peptides and lactic fermentations. Int. J. Dairy Technol. 59, 118-125 https://doi.org/10.1111/j.1471-0307.2006.00250.x
  18. Foltz, M., Meynen, E. E., Bianco, V., van Platerink, C., Koning, T. M. M.G., and Kloek, J. (2007) Angiotensin converting enzyme inhibitory peptides from a lactotripeptide-enriched milk beverage are absorbed intact into the circulation. J. Nutr. 137, 953-958 https://doi.org/10.1093/jn/137.4.953
  19. Fox, P. F. and Brodkorb, A. (2008) The casein micelle: historical aspects, current concepts and significance. Int. Dairy J. 18, 677-684 https://doi.org/10.1016/j.idairyj.2008.03.002
  20. Fuglsang, A., Nilsson, D., and Nyborg, N. C. B. (2003) Characterization of new milk-derived inhibitors of angiotensin converting enzyme in vitro and in vivo. J. Enzyme Inhib. Med. Chem. 18, 407-412
  21. Ganapathy, V., Leibach, F. H., and Yamada, T. (1999) Protein digestion and assimilation. In: Textbook of Gastroenterology. 3rd ed. Yamada, T. (ed). Lippincott Williams and Wilkins ilkins, Philadelphia, PA, USA, pp. 456-467
  22. Ganong, W. F. (1997) Section V. In review of medical physiology, Appleton and Lange, Stamford, CT, USA , pp. 437-481
  23. Garcia-Nebot, M. J., Alegria, A., Barbera, R., Clemente, G., and Romero, F. (2009) Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability? Food Chem. doi:10.1016/j.foodchem.2009.06.005
  24. Gobbetti, M., Ferranti, P., Smacchi, E., Goffredi, F., and Addeo, F. (2000) Production of angiotensin-I-convertingenzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl. Environ. Microbiol. 66, 3898-3904 https://doi.org/10.1128/AEM.66.9.3898-3904.2000
  25. Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., and Cagno, R. D. (2002) Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Crit. Rev. Food Sci. Nutr. 42, 223-239 https://doi.org/10.1080/10408690290825538
  26. Gray, G. M. and Cooper, H. L. (1971) Protein digestion and absorption. Gastroenterology 61, 535-544
  27. Grimble, G. K. (2000) Mechanisms of peptide and amino acid transport and their regulation. Furst, P., and Young, V. (eds.), In proteins, peptides and amino acids in enteral nutrition, Karger and Nestec, Basel, Switzerland, pp. 63-88
  28. Hata, Y., Yamamoto, M., Ohni, M., Nakajima, K., Nakamura, Y., and Takano, T. (1996) A placebo-controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am. J. Clin. Nutr. 64, 767-771 https://doi.org/10.1093/ajcn/64.5.767
  29. Haug, A., Høstmark, A. T., and Harstad, O. M. (2007) Bovine milk in human nutrition-a review. Lipids Health Dis. 6, 25-41 https://doi.org/10.1186/1476-511X-6-25
  30. Hern$\acute{a}$ndez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J. Agric. Food Chem. 52, 1504-1510 https://doi.org/10.1021/jf034997b
  31. Iwan, M., Jarmolowska, B., Bielikowicz, K., Kostyra, E., Kostyra, H., and Kaczmarski, M. (2008) Transport of ì-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Peptides 29, 1042-1047 https://doi.org/10.1016/j.peptides.2008.01.018
  32. Jauhiainen, T. and Korpela, R. (2007) Milk peptides and blood pressure. J. Nutr. 137, 825S-829S https://doi.org/10.1093/jn/137.3.825S
  33. Jauhiainen, T., Vapaatalo, H., Poussa, T., Kyronpalo, S., Rasmussen, M., and Korpela, R. (2005) Lactobacillus helveticus fermented milk lowers blood pressure in hypertensive subjects in 24-h ambulatory blood pressure measurement. Am. J. Hypertens. 18, 1600-1605 https://doi.org/10.1016/j.amjhyper.2005.06.006
  34. Jolles, P., Parker, F., Floch, F., Migliore, D., Alliel, P., Zerial, A., and Werner, G. H. (1981) Immunostimulating substances from human casein. Immunopharmacol. Immunotoxicol. 3, 363-370
  35. Juillard, V., Guillot, A., Le Bars, D., and Gripon, J. C. (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl. Environ. Microbiol. 64, 1230-1236
  36. Kelleher, S. L., Chatterton, D., Nielsen, K., and Lonnerdal, B. (2003) Glycomacropeptide and $\alpha$-lactalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am. J. Clin. Nutr. 77, 1261- 1268 https://doi.org/10.1093/ajcn/77.5.1261
  37. Kilara, A. and Panyam, D. (2003) Peptides from milk proteins and their properties. Crit Rev. Food Sci. Nutr. 43, 607 - 633 https://doi.org/10.1080/10408690390251138
  38. Korhonen, H. (2009) Milk-derived bioactive peptides: from science to applications. J. Funct. Foods 1, 177-187 https://doi.org/10.1016/j.jff.2009.01.007
  39. Korhonen, H. and Pihlanto-Leppala, A. (2003a) Bioactive peptides: novel applications for milk proteins. Appl. Biotech. Food Sci. Policy 1, 133-144
  40. Korhonen, H. and Pihlanto-Leppala, A. (2003b) Foodderived bioactive peptides-opportunities for designing future foods. Curr. Pharm. Des. 9, 1297-1308 https://doi.org/10.2174/1381612033454892
  41. Korhonen, H. and Pihlanto-Leppala, A. (2004) Milk-derived bioactive peptides: formation and prospects for health promotion. In hand-book of functional dairy products. Functional foods and nutraceuticals series 6.0, Shortt, C. and O’Brien, J. (eds.), CRC Press, Boca Raton, FL, USA, pp. 109-124
  42. Kostyra, E., Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., and Kostyra, H. (2004) Opioid peptides derived from milk proteins. Pol. J. Food Nutr. Sci. 13, 25-35
  43. Leclerc, P. L., Gauthier, S. F., Bachelard, H., Santure, M., and Roy, D. (2002) Antihypertensive activity of caseinenriched milk fermented by Lactobacillus helveticus. Int. Dairy J. 12, 995-1004 https://doi.org/10.1016/S0958-6946(02)00125-5
  44. Matar, C., Valdez, J. C., Medina, M., Rachid, M., and Perdigon, G. (2001) Immunomodulating effects of milks fermented by Lactobacillus helveticus and its non-proteolytic variant. J. Dairy Res. 68, 601-609 https://doi.org/10.1017/S0022029901005143
  45. Meisel, H. and FitzGerald, R. J. (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr. Pharm. Des. 9, 1289-1295 https://doi.org/10.2174/1381612033454847
  46. Meisel, H. and FitzGerald, R. J. (2000) Opioid peptides encrypted in intact milk protein sequences. Br. J. Nutr. 84, 27-31 https://doi.org/10.1017/S000711450000221X
  47. Moller, N. P., Scholz-Ahrens, K. E., Roos, N., and Schrezenmeir, J. (2008) Bioactive peptides and proteins from foods: indication for health effects. Eur. J. Nutr. 47, 171-182 https://doi.org/10.1007/s00394-008-0710-2
  48. Nielsen, M. S., Martinussen, T., Flambard, B., Sorensen, K. I., and Otte, J. (2009) Peptide profiles and angiotensin I converting enzyme inhibitory activity of fermented milk products: effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19, 155-165 https://doi.org/10.1016/j.idairyj.2008.10.003
  49. Ondetti, M. A. and Cushman, D. W. (1982) Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283-308 https://doi.org/10.1146/annurev.bi.51.070182.001435
  50. Ong, L. and Shah, N. P. (2008) Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 41, 1555-1566 https://doi.org/10.1016/j.lwt.2007.11.026
  51. Otani, H., Kihara, Y., and Park, M. (2000) The immunoenhancing property of a dietary casein phosphopeptide preparation in mice. Food Agr. Immunol. 12, 165 - 173 https://doi.org/10.1080/095401000404102
  52. Parrot, S., Degraeve, P., Curia, C., and Martial-Gros, A. (2003) In vitro study on digestion of peptides in Emmental cheese: analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung. 47, 87-94 https://doi.org/10.1002/food.200390032
  53. Pauliina, J., Jauhiainen, T., Korpela, R., and Vapaatalo, H. (2009) Milk protein-derived bioactive tripeptides Ile-Pro- Pro and Val-Pro-Pro protect endothelial function in vitro in hypertensive rats. J. Funct. Foods 1, 266-273 https://doi.org/10.1016/j.jff.2009.03.002
  54. Phelan, M., Aherne, A., FitzGerald, R. J., and O'Brien, N. M. (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 19, 643-654 https://doi.org/10.1016/j.idairyj.2009.06.001
  55. Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H. J. T., and Karp, M. (1999) The effect of $\alpha$-lactalbumin and $\beta$-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103 J. Appl. Microbiol. 87, 540-545 https://doi.org/10.1046/j.1365-2672.1999.00849.x
  56. Quir, A., Dávalos, A., Lasunci, M. A., Ramos, M., and Recio, I. (2008) Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP. Int. Dairy J. 18, 279-286 https://doi.org/10.1016/j.idairyj.2007.09.006
  57. Reichelt, K. L. and Knivsberg, A. M. (2003) Can the pathophysiology of autism be explained by the nature of the discovered urine peptides? Nutr. Neurosci. 6, 19-28 https://doi.org/10.1080/1028415021000042839
  58. Ruiz, P. A., Hoffmann, M., Szcesny, S., Blaut, M., and Haller, D. (2005) Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germfree rats. Immunology 115, 441-450 https://doi.org/10.1111/j.1365-2567.2005.02176.x
  59. Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., and Itoh, T. (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 83, 1434-1440 https://doi.org/10.3168/jds.S0022-0302(00)75013-2
  60. Sashihara, T., Sueki, N., and Ikegami, S. (2006) An analysis of the effectiveness of heat-killed lactic acid bacteria in alleviating allergic diseases. J. Dairy Sci. 89, 2846-2855 https://doi.org/10.3168/jds.S0022-0302(06)72557-7
  61. Satake, M., Enjoh, M., Nakamura, Y., Takano, T., Kawamura, Y., Arai, S., and Shimizu, M. (2002) Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 66, 378-384 https://doi.org/10.1271/bbb.66.378
  62. Saxena, P. R. (1992) Interaction between the renin-angiotensin- aldosterone and sympathetic nervous systems. J. Cardiovasc. Pharmacol. 19 Suppl 6, S80-8 https://doi.org/10.1097/00005344-199219006-00013
  63. Seppo, L., Jauhiainen, T., Poussa, T., and Korpela, R. (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77, 326-330 https://doi.org/10.1093/ajcn/77.2.326
  64. Shimizu, M. (2004) Food-derived peptides and intestinal functions. Bio. Factors 21, 43-47 https://doi.org/10.1002/biof.552210109
  65. Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Bielikowicz, K. (2009a) Transport of bovine milk-derived opioid peptides across a Caco-2 monolayer. Int. Dairy J. 19, 252-257 https://doi.org/10.1016/j.idairyj.2008.10.007
  66. Sienkiewicz-Szlapka, E., Jarmolowska, B., Krawczuk, S., Kostyra, E., Kostyra, H., and Iwan, M. (2009b) Contents of agonistic and antagonistic opioid peptides in different cheese varieties. Int. Dairy J. 19, 258-263 https://doi.org/10.1016/j.idairyj.2008.10.011
  67. Silva, S. V. and Malcata, F. (2005) Caseins as source of bioactive peptides. Int. Dairy J. 15, 1-15 https://doi.org/10.1016/j.idairyj.2004.04.009
  68. Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69, 103-111 https://doi.org/10.1017/S002202990100526X
  69. Sipola, M., Finckenberg, P., Santisteban, J., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2001) Long-term intake of milk peptides attenuates development of hypertension in spontaneously hypertensive rats. J. Physiol. Pharmacol. 52, 745-754
  70. Sun, H., Liu, D., Li, S., and Qin, Z. (2009) Transepithelial transport characteristics of the antihypertensive peptide, Lys- Val-Leu-Pro-Val-Pro, in human intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 73, 293-298 https://doi.org/10.1271/bbb.80473
  71. Sun, Z., Zhang, Z., Wang, X., Cade, R., Elmir, Z., and Fregly, M. (2003) Relation of β-casomorphin to apnea in sudden infant death syndrome. Peptides 24, 937-943 https://doi.org/10.1016/S0196-9781(03)00156-6
  72. Teschemacher, H. (2003) Opioid receptor ligands derived from food proteins. Curr. Pharm. Des. 9, 1331-1344 https://doi.org/10.2174/1381612033454856
  73. Ueno, K., Mizuno, S., and Yamamoto, N. (2004) Purification and characterization of an endopeptidase that has an important role in the carboxyl terminal processing of antihypertensive peptides in Lactobacillus helveticus CM4. Lett. Appl. Microbiol. 39, 313-318 https://doi.org/10.1111/j.1472-765X.2004.01560.x
  74. Vermeirssen, V., Camp, J. V., and Verstraete, W. (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br. J. Nutr. 92, 357-366 https://doi.org/10.1079/BJN20041189
  75. Yamamoto, N., Akino, A., and Takano, T. (1994) Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77, 917-922 https://doi.org/10.3168/jds.S0022-0302(94)77026-0

Cited by

  1. Prevention of lipid oxidation in muscle foods by milk proteins and peptides: A review 2016, https://doi.org/10.1080/87559129.2016.1261297
  2. 도토리 우유식빵의 품질 특성 vol.34, pp.3, 2019, https://doi.org/10.7318/kjfc/2019.34.3.343