Morphology of Nanocelluloses and Micro-sized Cellulose Fibers Isolated by Acid Hydrolysis Method

  • Cho, Mi-Jung (Department of Wood Science and Technology, Kyungpook National University) ;
  • Park, Byung-Dae (Department of Wood Science and Technology, Kyungpook National University)
  • 발행 : 2009.12.30

초록

As a part of utilizing the nanocellulose (NC) from lignocellulosic components of wood biomass, this paper reports preliminary results on the products of sulfuric acid hydrolysis. The purpose of this study was to investigate the morphology of both NC and micro-sized cellulose fiber (MCF) isolated by acid hydrolysis from commercial microcrystalline cellulose (MCC). Field emission.scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were employed to observe the acid hydrolysis suspension, NC, and MCF. The electron microscopy observations showed that the acid hydrolysis suspension, before separation into NC and MCF by centrifugation, was composed of nano-sized NCs and micro-sized MCFs. The morphology of isolated NCs was a whisker form of rod-like NCs. Measurements of individual NCs using TEM indicated dimensions of 6.96$\pm$0.87 nm wide by 178$\pm$55 nm long. Observations of the MCFs showed that most of the MCC particles had de-fibered into relatively long fibers with a diameter of 3-9 ${\mu}m$, depending on the degree of acid hydrolysis. These results suggest that proper technologies are required to effectively realize the potentials of both NCs and MCFs.

키워드

참고문헌

  1. Nabi Saheb D., Joe J.P., Natural fiber polymer composites : A review, Adv. Polym. Tech. 18, 351-363 (1999) https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  2. Tashiro K., Kobayashi M., Theoretical evaluation of three dimensional elastic constants of native and regenerated cellulose : role of hydrogen bonds. Polymer 32, 1516-1526 (1991) https://doi.org/10.1016/0032-3861(91)90435-L
  3. Sturcova A. Davies G.R., Eichhorn S.J., Elastic modulus and stress transfer properties of tunicate cellulose whiskers, Biomacro- molecules 6, 1055-1061 (2005) https://doi.org/10.1021/bm049291k
  4. Araki J., Wada M., Kuga S., Okano T., Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surf. A 142, 75-82 (1998) https://doi.org/10.1016/S0927-7757(98)00404-X
  5. Favier V., Canova G.R., Cavaille J.Y., Chanzy H., Dufresne A., Gauthier C., Nanocomposite materials from latex and cellulose whiskers, Polym. Adv. Tech. 6, 351-355 (1995) https://doi.org/10.1002/pat.1995.220060514
  6. Rodriguez N.L.G., Thielemans W., Dufresne A., Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites, Cellulose 13, 261-270 (2006) https://doi.org/10.1007/s10570-005-9039-7
  7. Leitner J., Hinterstoisser B., Wastyn M., Keckes J., Gindle W., Sugar beet cellulose nanofibril-reinforced composites, Cellulose 14, 419-425 (2007) https://doi.org/10.1007/s10570-007-9131-2
  8. Bondeson D.,Mathew A.,Oksman K., Optimization of the isolation of nanocrystals from MCC by acid hydrolysis, Cellulose 13, 171-180 (2006) https://doi.org/10.1007/s10570-006-9061-4
  9. Herrick F.W., Casebier R.L., Hamilton J.K., Sandberg K.R., Microfibrillated cellulose: Morphology and accessibility, J. Appl. Polym. Sci. : Applied Polymer Symposium 37, 797-813 (1983)
  10. Bhatnagar A. and Sain M., processing of cellulose nanofiber- reinforced composites, J. Reinfor. Plastics and Composites 24, 1259-1268 (2005) https://doi.org/10.1177/0731684405049864
  11. Cheng Q., Wang S., Rials T.G., Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity, Composites : Part A 40, 218-224 (2009) https://doi.org/10.1016/j.compositesa.2008.11.009
  12. Tokoh C., Takabe K., Fujita M., Saiki H., Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan, Cellulose 5, 249-261, (1998) https://doi.org/10.1023/A:1009211927183
  13. Hayashi N., Kondo T., Ishihara M., Enzymatically produced nano-ordered short elements containing cellulose Iß crystalline domains, Carbohydr. polym. 61, 191-197, (2005) https://doi.org/10.1016/j.carbpol.2005.04.018
  14. Helbert W., Cavaille J.Y. , Dufresne A., Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part1. processing and mechanical behavior, Polymer composites 17, 604-611, (1996) https://doi.org/10.1002/pc.10650
  15. M.A.S. Azizi Samir,F.Alloin, W.Gorecki, J-Y Sanchez, A. Dufresne, Nanocomposite polymer electrolytes based on poly(oxy ethylene) and cellulose nanocrystals, J. Phys. Chem. B. 108, 10845-10852 (2004) https://doi.org/10.1021/jp0494483
  16. Wang B., Sain M., Oksman K., Study of structural morphology of hemp fiber from the micro to the nanoscale, Appl. compos. mater. 14, 89-103 (2007)
  17. Ardizzone, S., F. S. Ddioguardi, T. Mussini, P. R. Mussini, S. Rondinini, B. Vercelli, A. Vertova. Microcrystalline cellulose powders : structure, surface features and water sorption capability, Cellulose 6, 57-69 (1999) https://doi.org/10.1023/A:1009204309120
  18. Phanshin, A.J., C. de Zeeuw. Textbook of Wood Technology, 4th Edition, McGraw-Hill Book Coo., New York, USA
  19. Donaldson, L., Cellulose microfibril aggregates and their size variation with cell wall type. Wood Sci. Tech. 41, 443–460 (2007) https://doi.org/10.1007/s00226-006-0121-6
  20. Pandey J.K., Lee J.W., Chu W.S., Kim C.S., Ahn S.H., Cellulose nano whiskers from grass of Korea, Macromolecular Research 16, 396-398 (2008) https://doi.org/10.1007/BF03218535
  21. Dong, X. M., T. Kimura, J.-F. Revol, D. G. Gray. Effects of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites. Langumir 12, 2076- 2082 (1996) https://doi.org/10.1021/la950133b