References
- Madhow, U., Honig, M. L., 'MMSE Interference Suppression for Direct Sequence Spread Spectrum CDMA,' IEEE Transactions on Communications, Vol.42., pp.3178-3188, 1994 https://doi.org/10.1109/26.339839
- Poor, H.V.,Verdu, S., 'Probability of Errors in MMSE Multiuser Detection,' IEEE Transactions on Information Theory, Vol.43, pp.858-871, 1997 https://doi.org/10.1109/18.568697
- Aazhang, B., Paris, B.P., Orsak, G.C., 'Neural Networks for Multiuser Detection in Code- Division Multiple-Access Channels,' IEEE Transactions on Communications, Vol.40, pp.1212-1222, 1992 https://doi.org/10.1109/26.153366
- Mitra, U., Poor, H.V., 'Neural Network Techniques for Adaptive Multiuser Demodulation,' IEEE Journal on Selected Areas in Communications, Vol.12, pp.1460-1470, 1994 https://doi.org/10.1109/49.339913
- Cruickshank, D.G.M., 'Radial Basis Function Receivers for DS-CDMA,' IEE Electronic Letters, Vol.32, pp.188-190, 1996 https://doi.org/10.1049/el:19960175
- Matyjas, J.D., Psaromiligkos, I.N., Batalama, S.N., Medley, M.J., 'Fast Converging Minimum Probability of Error Neural Network Receivers for DS-CDMA Communications,' IEEE Transactions on Neural Networks, Vol.15, pp.445-454, 2004 https://doi.org/10.1109/TNN.2004.824409
- Chen, S., Mulgrew, B., Grant, P.M., 'A Clustering Technique for Digital Communication Channel Equalization using Radial Basis Function Networks,' IEEE Transactions on Neural Networks, Vol.4, pp.570-579, 1993 https://doi.org/10.1109/72.238312
- Lee, J., Beach, C.D., Tepedelenlioglu, N., 'A Practical Radial Basis Function Equalizer,' IEEE Transactions on Neural Networks, Vol.10, pp. 450-455, 1999 https://doi.org/10.1109/72.750577
- Chen, S., Samingan, A. K., Hanzo, L., 'Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipath Channels', IEEE Trans. on Neural Networks, Vol.12, pp.604-611, 2001 https://doi.org/10.1109/72.925563
- V. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
- Burges, C. C. 'A tutorial on support Vector Machine for Pattern Recognition,' Data Mining and Knowledge Discovery, Vol.2, pp.121-167, 1998 https://doi.org/10.1023/A:1009715923555