Buffering Effects of Calcium Salts in Kimchi: Lowering Acidity, Elevating Lactic Acid Bacterial Population and Dextransucrase Activity

  • Seo, Eun-Chae (Division of Testing and Analysis, Seoul Regional Food and Drug Administration) ;
  • Moon, Jin-Seok (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Jung, Jee-Yun (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Ji-Sun (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Eom, Hyun-Ju (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, So-Young (Functional Food and Nutrition Division, Department of Korean Food Research for Globalization, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Yoon, Hyang-Sik (Chungcheongbuk-do Agricultural Research and Extension Services) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2009.12.31


This study investigates the buffering effects of calcium salts in kimchi on the total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added to dongchimi-kimchi, a watery radish kimchi, and the effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts.



  1. AOAC. 1980. Official Methods of Analysis, 13th Ed. AOAC. International, Washington, D.C. U.S.A
  2. Bronner, F and D. Pansu.1999. Nutritional aspects of calcium absorption. J. Nutr. 129: 9-12
  3. Cheigh, H. S. and K. Y. Park. 1994. Biochemical, Microbiological and Nutritional Aspects of Kimchi. Crit. Rev. Food Sci. Nutr. 32: 175-203
  4. Dybing, S. T., J. A. Wiegand, S. A. Brudvig, E. A. Huang, and R. C. Chandan. 1988. Effect of processing variables on the formation of calcium lactate crystals on Cheddar cheese. J. Dairy Sci. 71:1701-1710
  5. Eom, H. J., D. M. Seo, and N. S. Han. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67
  6. Eom, H. J. 2002. Isolation of psychrotrophic Leuconostoc mesenteroides producing highly active dextransucrase and application to lactate-fermented foods. MS thesis, Chungbuk National University, Cheongju, Korea
  7. De Valdez, G., G. S. de Giore, M. Garro, F. Mozzi, and G. Oliver. 1990. Lactic acid bacteria from naturally fermented vegetables. Microbiol. Alim. Nutr. 8: 175-179
  8. Han, N. S., Y. S. Jung, H. J. Eom, Y. H. Koh, J. F. Robyt, and J. H. Seo. 2002. Simultaneous biocatalytic synthesis of panose during lactate fermentation in kimchi. J. Microbiol. Biotechnol. 12: 46-52
  9. Heaney, R. P., K. Rafferty, M. S. Dowell, and J. Bierman. 2005. Calcium fortification systems differ in bioavailability. J. Am. Diet. Assoc. 105: 807-809
  10. Kang, K. O., J. G. Kim, and W. J. Kim. 1991. Effect of heat treatment and salts addition on dongchimi fermentation. Korean J. Food Sci. Technol. 20: 565-571
  11. Kitaoka, M. and J. F. Robyt. 1998. Large-scale preparation of highly purified dextransucrase from a high-producing constitutive mutant of Leuconostoc mesenteroides B-512FMC. Enzyme Microb. Technol. 23: 386-391
  12. Lee, D. S. and Y. S. Lee. 1997. CO production in fermentation of dongchimi (pickled radish roots, watery radish kimchi). J. Korean Soc. Food Sci. Nutr. 26: 1021-1027
  13. Lee, H. R. 1990. A study on the flavor compounds of dongchimi. Korean J. Soc. Food Sci. 6: 1-8
  14. Lee, J. S., G. Y. Heo, J. W. Lee, Y. J. Oh, J. A. Park, Y. H. Park, Y. R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150
  15. Miller, A. W., S. H. Ecklund, and J. F. Robyt. 1986. Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr. Res. 147: 119-133
  16. Miller, A. W. and J. F. Robyt. 1986. Activation and inhibition of dextransucrase by calcium. Biochim. Biophys. Acta 880: 32-39
  17. Monchois, V., A. Reverte, M. Remaud-Simeon, P. Monsan, and R. M. Willemot. 1998. Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Appl. Environ. Microbiol. 64: 1644-1649
  18. Moon, S. W., D. W. Cho, W. S. Park, and M. S. Jang. 1995. Effect of salt concentration on dongchimi fermentation. Kor. J. Food Sci. Technol. 27: 11-18
  19. Newbrun, E. and J. Carlsson. 1969. Reaction rate of dextransucrase from Streptococcus sanguis in the presence of various compounds. Arch. Oral Biol. 14: 461-466
  20. Robyt, J. F. and S. H. Eklund. 1983. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 121: 279-286
  21. Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202
  22. Sanoja, R. R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus $\alpha$-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66: 3350-3356
  23. van Hijum, S. A. F. T., G. H. van Geel-Schutten, H. Rahaoui, M. J. E. C. van der Maarel, and L. Dijkhuizen. 2002. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol .68: 4390-4398
  24. Vyas, H. K. and P. S. Tong. 2004. Impact of source and level of calcium fortification on the heat stability of reconstituted skim milk powder. J. Dairy Sci. 87: 1177-1180
  25. Weinstein, L. and L. F. Rettgeri. 1932. Biological and chemical studies of the Lactobacillus genus with special reference to xylose fermentation by L. pentoaceticus. J. Bacteriol. 24:1-28