DOI QR코드

DOI QR Code

Lactobacillus plantarum 299v Surface-Bound GAPDH: A New Insight Into Enzyme Cell Walls Location

  • Saad, N. (Laboratoire de Chimie des Substances Naturelles, EA 1069, Antenne IUT, Departement Genie Biologique) ;
  • Urdaci, M. (LMBA) ;
  • Vignoles, C. (UMR 6101 CNRS, Faculte de Medecine-U.) ;
  • Chaignepain, S. (University of Bordeaux, Institut Europeen de Chimie et Biologie (IECB)) ;
  • Tallon, R. (LMBA) ;
  • Schmitter, J.M. (University of Bordeaux, Institut Europeen de Chimie et Biologie (IECB)) ;
  • Bressollier, P. (Laboratoire de Chimie des Substances Naturelles, EA 1069, Antenne IUT, Departement Genie Biologique)
  • Published : 2009.12.31

Abstract

The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.

Keywords

References

  1. Antikainen, J., V. Kuparinen, K. L$\ddot{a}$hteenmaki, and T. K. Korhonen. 2007. pH-dependent association of enolase and GAPDH of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J. Bacteriol. 189: 4539-4543 https://doi.org/10.1128/JB.00378-07
  2. Barbosa, M. S., S. N. Bao, P. F. Andreotti, F. P. de Faria, M. S. Felipe, L. dos Santos Feitosa, M. J. Mendes-Giannini, and C. M. Soares. 2006. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect. Immun. 74: 382-389 https://doi.org/10.1128/IAI.74.1.382-389.2006
  3. Bergmann, S., M. Rohde, G. S. Chhatwal, and S. Hammerschmidt. 2001. Alpha-enolase of Streptococcus pneumoniae is a plasmin (ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40: 1273-1287 https://doi.org/10.1046/j.1365-2958.2001.02448.x
  4. Boekhorst, J., M. Wels, M. Kleerebezem, and R. J. Siezen. 2006. The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152: 3175-3183 https://doi.org/10.1099/mic.0.29217-0
  5. Bradford, H. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Charalampopoulos, D., S. S Pandiella, and C. Webb. 2003. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int. J. Food Microbiol. 82: 133-141 https://doi.org/10.1016/S0168-1605(02)00248-9
  7. Chhatwal, G. S. 2002. Anchorless adhesins and invasins of Gram-positive bacteria: A new class of virulence factors. Trends Microbiol. 10: 205-208 https://doi.org/10.1016/S0966-842X(02)02351-X
  8. Corcoran, B. M., C. Stanton, G. F. Fitzgerald, and R. P. Ross. 2005. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71: 3060-3067 https://doi.org/10.1128/AEM.71.6.3060-3067.2005
  9. Delgado, M. L., J. E. O'Connor, I. Azorin, J. Renau-Piqueras, M. L. Gil, and D. Gozalbo. 2001. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2, and TDH3 genes are also cell wall proteins. Microbiology 147: 411-417
  10. Delgado, M. L., M. L. Gil, and D. Gozalbo. 2003. Starvation and temperature upshift cause an increase in the enzymatically cell wall-associated glyceraldehyde-3-phosphate dehydrogenase protein in yeast. FEMS Yeast Res. 4: 297-303 https://doi.org/10.1016/S1567-1356(03)00159-4
  11. Egea, L., L. Aguilera, R. Gimenez, M. A. Sorolla, M. A. Aguilar, J. Badia, and L. Baldomaa. 2007. Role of secreted glyceraldehyde-3-phosphate dehydrogenase in the infection mechanism of enterohemorrhagic and enteropathogenic Escherichia coli: Interaction of the extracellular enzyme with human plasminogen and fibrinogen. Int. J. Biochem. Cell Biol. 39: 1190-1203 https://doi.org/10.1016/j.biocel.2007.03.008
  12. Ferdinand, W. 1964. The isolation and specific activity of rabbit-muscle glyceraldehyde phosphate dehydrogenase. Biochem. J. 92: 578-585
  13. Fothergill-Gilmore, L. A. and P. A. Michels. 1993. Evolution of glycosis. Prog. Biophys. Mol. Biol. 52: 105-235
  14. Gil-Navarro, I., M. L. Gil, M. Casanova, J. O'Connor, J. P. Martinez, and D. Gozalbo. 1997. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is a surface antigen. J. Bacteriol. 179: 4992-4999
  15. Gil, M. L., M. L. Delgado, and D. Gozalbo. 2001. Candida albicans cell wall-associated glyceraldehyde-3-phosphate dehydrogenase activity increases in response to starvation and temperature upshift. Med. Mycol. 39: 387-394 https://doi.org/10.1080/714031054
  16. Gozalbo, D., I. Gil-Navarro, I. Azorin, J. Renau-Piqueras, J. P. Martinez, and M. L. Gil. 1998. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect. Immun. 66: 2052-2059
  17. Grifantini, R., E. Bartolini, A. Muzzi, M. Draghi, E. Frigimelica, J. Berger, F. Randazzo, and G. Grandi. 2002. Gene expression profile in Neisseria meningitidis and Neisseria lactamica upon host-cell contact: From basic research to vaccine development. Ann. N. Y. Acad. Sci. 975: 202-216 https://doi.org/10.1111/j.1749-6632.2002.tb05953.x
  18. Hirel, P. H., J. M. Schmitter, P. Dessen, G. Fayat, and S. Blanquet. 1989. Extent of N-terminal methionine excision within E. coli proteins is governed by the side chain length of the penultimate aminoacid. Proc. Natl. Acad. Sci. U.S.A. 86: 8247-8251 https://doi.org/10.1073/pnas.86.21.8247
  19. Hurmalainen, V., S. Edelman, J. Antikainen, M. Baumann, K. Lahteenmäki, and R. K. Korhonen. 2007. Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153: 1112-1122 https://doi.org/10.1099/mic.0.2006/000901-0
  20. Kelly, P., P. B. Maguire, M. Bennett, D. Fitzgerald, R. J. Edwards, B. Thiede, et al. 2005. Correlation of probiotic Lactobacillus salivarius growth phase with its cell wallassociated proteome. FEMS Microbiol. Lett. 252: 153-159 https://doi.org/10.1016/j.femsle.2005.08.051
  21. Kinoshita, H., H. Uchida, Y. Kawai, T. Kawasaki, N. Wakahara, H. Matsuo, et al. 2008. Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J. Appl. Microbiol. 104: 1667-1674 https://doi.org/10.1111/j.1365-2672.2007.03679.x
  22. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  23. Lamonica, J. M., M. Wagner, M. Eschenbrenner, L. E. Williams, T. L. Miller, G. Patra, and V. G. Del-Vecchio. 2005. Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infect. Immun. 73: 3646-3658 https://doi.org/10.1128/IAI.73.6.3646-3658.2005
  24. Ling, E., G. Feldman, M. Portnoi, R. Dagan, K. Overweg, F. Mulholland, V. Chalifa-Caspi, J. Wells, and Y. Mizrachi-Nebenzahl. 2004. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin. Exp. Immunol. 138: 290-298 https://doi.org/10.1111/j.1365-2249.2004.02628.x
  25. Morales, M. L., A. G. Gonzalez, and A. M. Troncoso. 1998. Ion-exclusion chromatographic determination of organic acids in vinegars. J. Chromat. A 822: 45-51 https://doi.org/10.1016/S0021-9673(98)00572-X
  26. Niedzielin, K., H. Kordecki, and B. Birkenfeld. 2001. A controlled, double-blind, randomized study on efficacy of Lactobacillus plantarum 299v in patients with irritable bowel syndrome. Eur. J. Gastroenterol. Hepatol. 13: 1143-1147 https://doi.org/10.1097/00042737-200110000-00004
  27. Pancholi, V. and V. A. Fischetti. 1992. Major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med. 176: 415-426 https://doi.org/10.1084/jem.176.2.415
  28. Pancholi, V. and V. A. Fischetti. 1997. Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: Signal transduction between streptococci and pharyngeal cells. J. Exp. Med. 186: 1633-1643 https://doi.org/10.1084/jem.186.10.1633
  29. Pancholi, V. and G. S. Chhatwal. 2003. Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. 293: 391-401 https://doi.org/10.1078/1438-4221-00283
  30. Parvez, S., K. A. Malik, S. Ah Kang, and H.-Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185 https://doi.org/10.1111/j.1365-2672.2006.02963.x
  31. Ramiah, K., C. A. Van Reenen, and M. T. Dicks. 2008. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Res. Microbiol. 159: 470-475 https://doi.org/10.1016/j.resmic.2008.06.002
  32. Schaumburg, J., O. Diekmann, P. Hagendorff, S. Bergmann, M. Rohde, S. Hammerschmidt, L. Jansch, J. Wehland, and U. Karst. 2004. The cell wall subproteome of Listeria monocytogenes. Proteomics 4: 2991-3006 https://doi.org/10.1002/pmic.200400928
  33. Shapiro, M. H. 2008. Flow cytometry of bacterial membrane potential and permeability. Methods Molec. Med. 142: 175-186. In W. Scott Champney (ed.). New Antibiotic Targets. Humana Press Inc., Totowa, NJ
  34. Villamon, E., V. Villalba, M. Mercedes Nogueras, J. M. Tomas, D. Gozalbo, and M. L. Gill. 2003. Glyceraldehyde-3-phosphate dehydrogenase, a glycolytic enzyme present in the periplasm of Aeromonas hydrophila. Antonie Van Leeuwenhoek 84: 31-38 https://doi.org/10.1023/A:1024435612550

Cited by

  1. The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells vol.10, pp.None, 2009, https://doi.org/10.1186/1471-2180-10-280
  2. Identification of Surface Proteins from Lactobacillus casei BL23 Able to Bind Fibronectin and Collagen vol.3, pp.1, 2009, https://doi.org/10.1007/s12602-011-9065-8
  3. Bacterial Virulence in the Moonlight: Multitasking Bacterial Moonlighting Proteins Are Virulence Determinants in Infectious Disease vol.79, pp.9, 2009, https://doi.org/10.1128/iai.00179-11
  4. Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli vol.7, pp.7, 2009, https://doi.org/10.1371/journal.pone.0040592
  5. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions vol.88, pp.4, 2009, https://doi.org/10.1111/brv.12037
  6. Proposal of screening method for intestinal mucus adhesive lactobacilli using the enzymatic activity of glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) vol.84, pp.2, 2009, https://doi.org/10.1111/j.1740-0929.2012.01054.x
  7. Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins vol.168, pp.5, 2009, https://doi.org/10.1016/j.micres.2013.01.003
  8. How are the Non-classically Secreted Bacterial Proteins Released into the Extracellular Milieu? vol.67, pp.6, 2013, https://doi.org/10.1007/s00284-013-0422-6
  9. Characterization of the response to low pH of Lactobacillus casei ΔRR12, a mutant strain with low D‐alanylation activity and sensitivity to low pH vol.116, pp.5, 2009, https://doi.org/10.1111/jam.12442
  10. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin vol.169, pp.2, 2014, https://doi.org/10.1016/j.micres.2013.07.013
  11. Dancing to Another Tune—Adhesive Moonlighting Proteins in Bacteria vol.3, pp.1, 2009, https://doi.org/10.3390/biology3010178
  12. Effect of iron on the probiotic properties of the vaginal isolate Lactobacillus jensenii CECT 4306 vol.161, pp.4, 2009, https://doi.org/10.1099/mic.0.000044
  13. Lactobacillus reuteri glyceraldehyde-3-phosphate dehydrogenase functions in adhesion to intestinal epithelial cells vol.61, pp.5, 2009, https://doi.org/10.1139/cjm-2014-0734
  14. The safety and feasibility of probiotics in children and adolescents undergoing hematopoietic cell transplantation vol.51, pp.2, 2009, https://doi.org/10.1038/bmt.2015.275
  15. Effect of environmental stress on cell surface and membrane fatty acids of Lactobacillus plantarum vol.199, pp.9, 2009, https://doi.org/10.1007/s00203-017-1395-9
  16. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms vol.101, pp.7, 2017, https://doi.org/10.1007/s00253-017-8182-z
  17. A Surface Protein From Lactobacillus plantarum Increases the Adhesion of Lactobacillus Strains to Human Epithelial Cells vol.9, pp.None, 2018, https://doi.org/10.3389/fmicb.2018.02858
  18. Identification of proteins regulated by acid adaptation related two component system HPK1/RR1 in Lactobacillus delbrueckii subsp. bulgaricus vol.200, pp.9, 2009, https://doi.org/10.1007/s00203-018-1552-9
  19. Lactiplantibacillus plantarum 299v (LP299V®): three decades of research vol.12, pp.5, 2009, https://doi.org/10.3920/bm2020.0191
  20. The N-terminus of Lactobacillus amylovorus feruloyl esterase plays an important role in its secretion by Lactobacillus plantarum and Escherichia coli vol.20, pp.1, 2021, https://doi.org/10.1186/s12934-021-01645-9