The Effect of Using Nano NiO Powder Made by Pulsed Wire Evaporation (PWE) Method on SOFC Anode Functional Layer

Pulsed Wire Evaporation(PWE) Method으로 제조된 나노 NiO 분말의 SOFC 연료극 기능성층으로의 적용

  • Kim, Hae-Won (Fuel Cell Research Center, Korea Institude of Energy Research) ;
  • Kim, Dong-Ju (Fuel Cell Research Center, Korea Institude of Energy Research) ;
  • Park, Seok-Joo (Fuel Cell Research Center, Korea Institude of Energy Research) ;
  • Lim, Tak-Hyoung (Fuel Cell Research Center, Korea Institude of Energy Research) ;
  • Lee, Seung-Bok (Fuel Cell Research Center, Korea Institude of Energy Research) ;
  • Shin, Dong-Ryul (Fuel Cell Research Center, Korea Institude of Energy Research) ;
  • Yoon, Soon-Gil (Dept. of Material Science and Engineering, Chungnam National Univ.) ;
  • Song, Rak-Hyun (Fuel Cell Research Center, Korea Institude of Energy Research)
  • 김혜원 (한국에너지기술연구원 연료전지연구단) ;
  • 김동주 (한국에너지기술연구원 연료전지연구단) ;
  • 박석주 (한국에너지기술연구원 연료전지연구단) ;
  • 임탁형 (한국에너지기술연구원 연료전지연구단) ;
  • 이승복 (한국에너지기술연구원 연료전지연구단) ;
  • 신동렬 (한국에너지기술연구원 연료전지연구단) ;
  • 윤순길 (충남대학교 재료공학과) ;
  • 송락현 (한국에너지기술연구원 연료전지연구단)
  • Published : 2009.12.30

Abstract

In present work, NiO/YSZ anode functional layer was prepared by nano NiO powder and 8YSZ powder. The nano NiO powders were made by Pulsed wire evaporation (PWE) method. Nano NiO- YSZ functional layer was sintered at the temperature of $900-1400^{\circ}C$. The prepared functional layer was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. The nano NiO- YSZ anode functional layer sintered at $1300^{\circ}C$ shows the lowest polarization resistance. Nano NiO- YSZ anode functional layer shows about two times smaller polarization resistance than the anode functional layer made by commercial NiO-YSZ powders. Based on these experimental results, it is concluded that the nano NiO-YSZ cermet is suitable as a anode functional layer operated at $800^{\circ}C$.

Keywords

References

  1. J. Molenda, K. Swierczeka and W. Zajaca, 'Functional materials for the IT-SOFC'. Journal of Power Sources, Vol. 173, 2007. p. 657 https://doi.org/10.1016/j.jpowsour.2007.05.085
  2. P. Charpentier, P. Fragnaud, D. M. Schleich and E. Gehain, 'Preparation of thin film SOFCs working at reduced temperature'. Solid state ionics, Vol. 135, 2000, p. 373 https://doi.org/10.1016/S0167-2738(00)00472-0
  3. S. D. Kim, S. H. Hyun, J. Moon, J. H. Kim, and R. H. Song, 'Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells'. J. Power Sources, Vol. 139, 2005, p. 67 https://doi.org/10.1016/j.jpowsour.2004.07.013
  4. Kongfa Chen, Xiangjun Chen, Zhe Lu, Na Ai, Xiqiang Huang, and Wenhui Su, 'Performance of an anode-supported SOFC with anode functional layers'. Electrochimica Acta, Vol. 53, 2008, p. 7825 https://doi.org/10.1016/j.electacta.2008.05.063
  5. Y. R. Uhm, H. M. Lee, and C. K. Rlee 'Struture and Magnetic Properties of Carbon- Encapsulated Ni Nanoparticles'. IEEE TRANSACTIONS ON MAGNETICS, Vol. 45, No. 6, 2009, p. 2453 https://doi.org/10.1109/TMAG.2009.2018609
  6. Y. R. Uhm, J. H. Park, W. W. Kim, C. H. Cho, and C. K. Rlee, 'Magnetic properties of nano-size Ni synthesized by the pulsed wire evaporation (PWE) methode'. Material Science and Engineering B, Vol. 106, 2004, p. 224 https://doi.org/10.1016/j.mseb.2003.08.057
  7. F.P.F van Berkel, F.H. Heuveln and J.P.P Huijsmans, 'Status of SOFC Component Development at ECN'. Proceeding of the 3rd International Symposium on Solid Oxide Fuel Cell, 1993, pp. 744-751
  8. Hui-Jeong Son, Tak-Hyoung Lim, Seung-Bok Lee, Dong-Tyul Shin, Rak-Hyun Song and Sung-Hyun Kim, 'Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process'. Transactions of the Korean Hydrogen and New Energy Society, Vol. 17, No.2, 2006 p. 204
  9. Ji-Woong Moon, Goo-Dae Kim, Ki-Tae Lee, and Hong-lim Lee, 'Effect of YSZ Particle Size and Sintering Temperature on the Microstructure and Impedance Property of Ni-YSZ Anode for Solid Oxide Fuel Cell'. Journal of the Korean Ceramic Society, Vol. 38m No. 5, 2001, p. 466