Nonlinear rheology of linear polymer melts: Modeling chain stretch by interchain tube pressure and Rouse time

  • Wagner, Manfred H. (Chair of Polymer Engineering and Physics, Berlin Institute of Technology (TU Berlin)) ;
  • Rolon-Garrido, Victor H. (Chair of Polymer Engineering and Physics, Berlin Institute of Technology (TU Berlin))
  • Published : 2009.12.31

Abstract

In flows with deformation rates larger than the inverse Rouse time of the polymer chain, chains are stretched and their confining tubes become increasingly anisotropic. The pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic and limit chain stretch. In the Molecular Stress Function (MSF) model, chain stretch is balanced by an interchain pressure term, which is inverse proportional to the $3^{rd}$ power of the tube diameter and is characterized by a tube diameter relaxation time. We show that the tube diameter relaxation time is equal to 3 times the Rouse time in the limit of small chain stretch. At larger deformations, we argue that chain stretch is balanced by two restoring tensions with weights of 1/3 in the longitudinal direction of the tube (due to a linear spring force) and 2/3 in the lateral direction (due to the nonlinear interchain pressure), both of which are characterized by the Rouse time. This approach is shown to be in quantitative agreement with transient and steady-state elongational viscosity data of two monodisperse polystyrene melts without using any nonlinear parameter, i.e. solely based on the linear-viscoelastic characterization of the melts. The same approach is extended to model experimental data of four styrene-butadiene random copolymer melts in shear flow. Thus for monodisperse linear polymer melts, for the first time a constitutive equation is presented which allows quantitative modeling of nonlinear extension and shear rheology on the basis of linear-viscoelastic data alone.

Keywords

References

  1. Bach, A., K. Almdal, H.K. Rasmussen and O. Hassager, 2003, 'Elogational viscosity of narrow molar mass distribution polystyrene,' Macromolecules 36, 5174-5179 https://doi.org/10.1021/ma034279q
  2. Boukany P.E., S.Q. Wang and X. Wang, 2009, 'Universal scaling behavior in startup shear of entangled linear melts', J. Rheol. 53, 617-629 https://doi.org/10.1122/1.3086872
  3. Doi, M., 1980, 'A constitutivε equation derived from the model of Doi and Edwards for concentrated polymer solutions and polymer melts, J. Polym. Sci. B Phys. Ed. 18, 2055-2067 https://doi.org/10.1002/pol.1980.180181005
  4. Doi, M. and Edwards, S.F., 1979, Dynamics of Concentrated Polymer Systems. Part 4.- Rheological Properties. Trans. Faraday Soc II 75, 38-54 https://doi.org/10.1039/f29797500038
  5. Doi, M. and S. F. Edwards, 1986, The Theory of Polymer Dynamics, Oxford University Press,
  6. Hassager, O., 2004, 'Polymer fluid mechanics: Molecular orientation and stretching,' Proc. XIVth Int. Congress on Rheology, NF01
  7. Isaki, T., M. Takahashi and O. Urakawa, 2003, 'Biaxial damping function of entangled monodisperse polystyrene melts: Comparison with the Mead-Larson-Doi model,' J. Rheol. 47, 1201-1210 https://doi.org/10.1122/1.1595096
  8. Marrucci, G. and B. de Cindio, 1980, 'The stress relaxation of molten PMMA at large deformations and its theoretical interpretation,' Rheol. Acta 19, 68-75 https://doi.org/10.1007/BF01523856
  9. Marrucci, G. and G. lanniruberto, 2004, 'Interchain pressure effect in extensional flows of entangled polymer melts,' Macromolecules 37, 3934-3942 https://doi.org/10.1021/ma035501u
  10. McLeish, T.C.B. and R.G. Larson, 1998, 'Molecular constitutive equations for a class of branched polymers: the pom-pom polymer,' J. Rheol. 42, 81-110 https://doi.org/10.1122/1.550933
  11. Mead, D.W., R.G Larson and M. Doi, 1998, 'A molecular theory for fast flows of entangled polymers,' Macromolecules 31, 7895-7914 https://doi.org/10.1021/ma980127x
  12. Menezes, E.V and W.W. Graessley, 1982, 'Nonlinear rheological behavior of polymer systems for several shear-flow histories,' Polym. Phys. 20, 1817-1833 https://doi.org/10.1002/pol.1982.180201006
  13. NieIsen J.K., H.K. Rasmussen, O. Hassager and G.H. McKinley, 2006, 'Elongational viscosity of monodisperse and bidisperse polystyrene melts,' J. Rheol. 50, 453-476 https://doi.org/10.1122/1.2206711
  14. Nielsen J.K., H.K. Rasmussen, and O. Hassager, 2008, 'Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension,' J. Rheol. 52, 885-899 https://doi.org/10.1122/1.2930872
  15. Nielsen J.K. and H.K. Rasmussen, 2008, 'Reversed extension flow,' J. Non-Newtonian Fluid Metch. 155, 15-19 https://doi.org/10.1016/j.jnnfm.2008.04.005
  16. Osaki, K., K. Nishizawa and M. Kurata, 1982, 'Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems,' Macromolecules 15, 1068-1071 https://doi.org/10.1021/ma00232a021
  17. Pearson, D.S., A. Kiss, L. Fetters and M. Doi, 1989, 'FlowInduced Birefringence of Concentrated Polyisoprene Solutions,' J. Rheol. 33, 517-535 https://doi.org/10.1122/1.550026
  18. Takahashi, M., T. Isaki, T. Takigawa and T. Masuda, 1993, 'Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates,' J. Rheol. 37, 827-846 https://doi.org/10.1122/1.550397
  19. Tapadia, P. and S.Q. Wang, 2006, 'Direct visualization of continuous simple shear in non-newtonian polymeric fluids', Phys. Rev. Lett. 96, 016001 https://doi.org/10.1103/PhysRevLett.96.016001
  20. Wagner, M.H. and J. Schaeffer, 1992, 'Nonlinear strain measures for general biaxial extension of polymer melts,' J. Rheol. 36, 1-26 https://doi.org/10.1122/1.550338
  21. Wagner, M.H. and J. Schaeffer, 1993, 'Rubbers and Polymer melts: Universal aspects of non-linear stress-strain relations,' J. Rheol. 37, 643-661 https://doi.org/10.1122/1.550388
  22. Wagner, M.H. and J. Schaeffer, 1994, 'Assessment of non-linear strain measures for extensional and shearing flows of polymer melts,' Rheol. Acta. 33, 506-516 https://doi.org/10.1007/BF00366335
  23. Wagner, M.H., P. Rubio and H. Bastian, 2001, 'The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release,' J. Rheol. 45, 1387-1412 https://doi.org/10.1122/1.1413503
  24. Wagner, M.H., S. Kheirandish and O. Hassager, 2005, 'Quantitative prediction of transient and steady-state elongational viscosity of nearly monodispersε polystyrene melts', J. Rheol. 49, 1317-1327 https://doi.org/10.1122/1.2048741