FDG Uptake and a Contrast Enhancement According to Histopathologic Types in Lung Cancers

폐암의 조직학적 분류에 따른 종양의 FDG 섭취와 CT 조영증강정도에 관한 연구

  • Han, You-Mie (Department of Nuclear medicine, Korea University College of Medicine) ;
  • Choe, Jae-Gol (Department of Nuclear medicine, Korea University College of Medicine) ;
  • Kim, Young-Chul (Department of Nuclear medicine, Korea University College of Medicine) ;
  • Park, Eun-Kyung (Department of Nuclear medicine, Korea University College of Medicine)
  • 한유미 (고려대학교 의과대학 핵의학교실) ;
  • 최재걸 (고려대학교 의과대학 핵의학교실) ;
  • 김영철 (고려대학교 의과대학 핵의학교실) ;
  • 박은경 (고려대학교 의과대학 핵의학교실)
  • Published : 2009.02.28

Abstract

Purpose: The aims of this study were to analyze correlation between the maximum standardized uptake value (SUVmax) of 2-[F-18]-fluoro-2-deoxy-d-glucose (FDG) on positron emission computed tomography (PET-CT) scan and the degree of contrast enhancement on computed tomography (CT) scan in lung cancers, and to recognize the difference in SUVmax and CT enhancement between groups of different histopathologic subtypes. Materials and Methods: Our study included 53 patients of pathologically confirmed primary lung cancer, who were performed PET-CT and post-contrast chest CT. We calculated initial and delayed SUVmax (SUV1, SUV2), difference between SUV1 and SUV2 (SUVd), retention index (RI), and the degrees of CT contrast enhancement of lung cancers. We analyzed these variables for subtypes of lung cancers. Results: The values (mean$\pm$ standard deviation) were $8.3{\pm}4.4$ for SUV1, $10.7{\pm}5.7$ for SUV2, $2.4{\pm}1.6$ for SUVd, $30{\pm}14$ for RI and $47.1{\pm}14.8$ HU (Hounsfield Unit) for degree of CT contrast enhancement. The difference of SUV1 and degree of CT enhancement between subtypes was not meaningful. SUV1 showed positive correlations with SUVd (r=0.74, p<0,01) and tumor size (r=0.58, p<0.01), but no significant correlation with degree of CT enhancement (r=0.06, p=0.69). In 10 cases, there was discrepancy in the same mass between the area of highest FDG-uptake and the area of highest contrast enhancement. Conclusion: We suggest that FDG uptake in lung cancer does not have a positive linear correlation with degree of CT enhancement. And there is no significant difference in FDG uptake and degree of CT enhancement between different subtypes of lung cancers.

목적: 폐암에서 양전자단층촬영(PET-CT)에서의 2[F-18]-fluoro-2-deoxy-d-glucose (FDG)의 최대 표준화섭취(SUVmax)와 전산화단층찰영(CT)에서의 조영증장정도에 서로 연관성이 있는지를 알아보고 SUVmax와 조영증강 정도에 있어 폐암의 조직학적 유형간에 유의한 차이가 있는지를 평가 하고자 하였다. 대상 및 방법: PET-CT와 조영증강 흥부 CT를 시행하고 조직학적으로 원발성 폐암으로 확진된 환자 53명을 대상으로 하였다. 초기 및 지연 PET-CT영상에서의 종양의 SUVmax (SUV1, SUV2), 지연영상에서의 SUVmax의 증가정도(SUVd), 잔류지수(RI) 및 종양의 CT 조영증강정도를 측정하고 상관관계를 알아보았으며, 이 변수들의 폐암의 조직학적 유형에 따른 차이와 종양내부에서 차이를 평가하였다. 결과: 평균값과 표준 편차는 SUV1이 $8.3{\pm}4.4$, SUV2가 $10.7{\pm}5.7$, SUVd가 $2.4{\pm}1.6$, RI가 $30{\pm}14$, 조영증강정도가 $47.1{\pm}14.8$ HU (Hounsfield Unit)이었다. 조직학적 유형 간 SUV1과 조영증강정도에는 차이가 없었다. SUV1과 SUVd 사이에는 r=0.74(p<0.01), SUV1과 종양의 크기 사이에는 r=0.58 (p<0.01)로 유의한 상관관계가 있었고 SUV1과 조영증강정도 사이에는 상관관계가 없었다(r=0.06, p=0.69). 같은 종양 내부에서 최대 FDG 섭취부위와 최대 조영증강부위가 일치하지 않는 경우가 10예 있었다. 결론: 폐암에서의 FDG 섭취정도와 CT 조영증강정도는 서로 유의한 양적인 선형 상관관계를 보이지 않았으며 조직학적 분류에 따른 FDG 섭취나 조영증강정도의 차이도 없었다.

Keywords

References

  1. Sone S, Nakayama T, Honda T, Tsushima K, Li F, Haniuda M, et al. CT findings of early-stage small cell lung cancer in a low-dose CT screening programme. Lung Cancer 2007;56:207-15 https://doi.org/10.1016/j.lungcan.2006.12.014
  2. Saito H, Minamiya Y, Kawai H, Nakagawa T, Ito M, Hosono Y, et al. Usefulness of circumference difference for estimating the likelihood of malignancy in small solitary pulmonary nodules on CT. Lung Cancer 2007;58:348-54 https://doi.org/10.1016/j.lungcan.2007.06.018
  3. LinksLi F, Sone S, Abe H, Macmahon H, Doi K Malignant versus benign nodules at CT screening for lung cancer: comparison of thin-section CT findings. Radiology 2004;233:793-8 https://doi.org/10.1148/radiol.2333031018
  4. Proto AV, Thomas SR Pulmonary nodules studied by computed tomography. Radiology 1985;156:149-53 https://doi.org/10.1148/radiology.156.1.4001402
  5. Siegelman SS, Khouri N, Leo FP, Fishman EK, Bravennan RM, Zerhouni EA. Solitary pulmonary nodules: CT assessment. Radiology 1986;160:307-12 https://doi.org/10.1148/radiology.160.2.3726105
  6. Tan BB, Flaherty KR, Kazerooni EA, Iannettoni MD. The solitary pulmonary nodule. Chest 2003;123: 89S-96S https://doi.org/10.1378/chest.123.1_suppl.89S
  7. Tateishi U, Nishihara H, Tsukamoto E, Morikawa T, Tamaki N, Miyasaka K. Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J Comput Assist Tomogr 2002;26:185-90 https://doi.org/10.1097/00004728-200203000-00004
  8. Zhang M, Kono M. Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 1997;205:471-8 https://doi.org/10.1148/radiology.205.2.9356631
  9. Yi CA, Lee KS, Kim EA, Han J, Kim H, Kwon OJ, et al. Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 2004;233:191-9 https://doi.org/10.1148/radiol.2331031535
  10. Gupta NC, Frank AR, Dewan NA, Redepenning LS, Rothberg ML, Mailliard JA, et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1992;184:441-4 https://doi.org/10.1148/radiology.184.2.1620844
  11. Orlacchio A, Schillaci O, Antonelli L, D'Urso S, Sergiacomi G, NicoliP, et al. Solitary pulmonary nodules: morphological and metabolic characterisation by FDG-PET-MDCT. Radiol Med(Torino) 2007;112:157-73 https://doi.org/10.1007/s11547-007-0132-x
  12. Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 1996;23:1641-74 https://doi.org/10.1007/BF01249629
  13. Giorgetti A, Volterrani D, Mariani G. Clinical oncological applications of positron emission tomography (PET) using fluorine-18-fluoro-2-deoxy-D-glucose Radiol Med(Torino) 2002;103:293-318
  14. Duhaylongsod FG, Lowe VJ. Patz EF Jr, Vauqhn AL, Coleman RE, Wolfe WG. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG PET). J Thorac Cardiovasc Surg 1995;110:130-9 https://doi.org/10.1016/S0022-5223(05)80018-2
  15. Bunyaviroch T, Coleman RE. PET evaluation of lung cancer. J Nucl Med 2006;47:451-69
  16. Coleman RE. PET in lung cancer. J Nucl Med 1999;40:814-20
  17. Swensen SJ, Brown LR, Colby TV, Weaver AL, Midthun DE. Lung nodule enhancement at CT: prospective findings. Radiology 1996;201:447-55 https://doi.org/10.1148/radiology.201.2.8888239
  18. Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallieres E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res 2000;6:3837-44
  19. Yap CS, Czemin J, Fishbein MC, Cameron RB, Schiepers C, Phelps ME, et al. Evaluation of thoracic tumors with F-18 fluorothymidine and F-18 fluorodeoxyglucose-positron emission tomography. Chest 2006;129:393-401 https://doi.org/10.1378/chest.129.2.393
  20. de Geus-Oei LF, van der Heijden HF, Visser EP, Hermsen R, van Hoom BA, Timmer-Bonte JN, et al. Chemotherapy response evaluation with F-18 FDG PET in patients with non-small cell lung cancer. J Nucl Med 2007;48:1592-8 https://doi.org/10.2967/jnumed.107.043414
  21. LinksXiu Y, Bhutani C, Dhurairaj T, Yu JQ, Dadparvar S, Reddy S, et al. Dual-time point FDG PET imaging in the evaluation of pulmonary nodules with minimally increased metabolic activity. Gin Nucl Med 2007;32:101-5 https://doi.org/10.1097/01.rlu.0000252457.54929.b7
  22. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point F-18 FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871-5
  23. Lu G, Wang Z, Zhu H, Chang L, Chen Y, Wu J, et al. The Advantage of PET and CT integration in examination of lung tumors. Int J Biomed Imaging 2007;2007:17131
  24. Klein JS, Braff S. Imaging evaluation of the solitary pulmonary nodule. Gin Chest Med 2008;29:15-38 https://doi.org/10.1016/j.ccm.2007.11.007
  25. Fletcher JW, Kymes SM, Gould M, Alazraki N, Coleman RE, Lowe VJ, et al. A comparison of the diagnostic accuracy of F-18 FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med 2008;49:179-85 https://doi.org/10.2967/jnumed.107.044990
  26. Swensen SJ, Viggiano RW, Midthun DE, M${\ddot{u}}$lier NL, Sherrick A, Yamashita K, et al. Lung nodule enhancement at CT: multicenter study. Radiology 2000;214:73-80 https://doi.org/10.1148/radiology.214.1.r00ja1473
  27. Chong S, Lee KS, Chung MJ, Han J, Kwon OJ, Kim TS. Neuroendocrine tumors of the lung: clinical, pathologic, and imaging findings. Radiographics 2006;26:41-57 https://doi.org/10.1148/rg.261055057
  28. Wang Y, Liu X, Lin Y, Yi X, Ding L, Wang X, et al. The correlation between stroma analysis and MDCT early phase contrast enhancement in small solid lung adenocarcinoma. Chin Ger J Gin Oncol 2007;6:419-24 https://doi.org/10.1007/s10330-007-0061-0
  29. Yamashita K, Matsunobe S, Takahashi R, Tsuda T, Matsumoto K, Miki H, et al. Small peripheral lung carcinoma evaluated with incremental dynamic CT: diologic-pathologic correlation. Radiology 1995;196:401-8 https://doi.org/10.1148/radiology.196.2.7617852
  30. Cho YM, Kim YH, Seon HJ, Park JG, Kim JK, Jeong GW, et al. Malignant solitary pulmonary nodule: enhancement patterns on contrast enhanced dynamic CT with the histopathologic evaluation. J Korean Radio Soc 2006;55: 137-42 https://doi.org/10.3348/jkrs.2006.55.2.137